language_model.py 21.6 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer based language model."""

import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
from megatron import mpu
23
from .module import MegatronModule
24
from megatron.model.enums import LayerType, AttnMaskType
Mohammad's avatar
Mohammad committed
25
26
from megatron.model.transformer import ParallelTransformer
from megatron.model.utils import get_linear_layer
27
from megatron.model.utils import init_method_normal, scaled_init_method_normal
28

29

30
31
32
def parallel_lm_logits(input_, word_embeddings_weight, parallel_output,
                       bias=None):
    """LM logits using word embedding weights."""
33
    args = get_args()
34
    # Parallel logits.
35
36
    if args.async_tensor_model_parallel_allreduce or\
            args.model_parallel_memory_opt:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
37
        input_parallel = input_
38
39
        model_parallel = mpu.get_tensor_model_parallel_world_size() > 1
        async_grad_allreduce = args.async_tensor_model_parallel_allreduce and \
40
            model_parallel and not args.model_parallel_memory_opt
41
    else:
42
43
44
        input_parallel = mpu.copy_to_tensor_model_parallel_region(input_)
        async_grad_allreduce = False

45
    # Matrix multiply.
46
47
48
    logits_parallel = mpu.LinearWithGradAccumulationAndAsyncCommunication.apply(
        input_parallel, word_embeddings_weight, bias,
        args.gradient_accumulation_fusion,
49
        async_grad_allreduce, args.model_parallel_memory_opt)
50
    # Gather if needed.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
51

52
53
    if parallel_output:
        return logits_parallel
Mohammad's avatar
Mohammad committed
54

55
    return mpu.gather_from_tensor_model_parallel_region(logits_parallel)
Mohammad's avatar
Mohammad committed
56
57


58
def get_language_model(num_tokentypes, add_pooler,
59
                       encoder_attn_mask_type, init_method=None,
60
61
                       scaled_init_method=None, add_encoder=True,
                       add_decoder=False,
62
63
                       decoder_attn_mask_type=AttnMaskType.causal,
                       pre_process=True, post_process=True):
Mohammad's avatar
Mohammad committed
64
    """Build language model and return along with the key to save."""
65
    args = get_args()
Mohammad's avatar
Mohammad committed
66

67
68
69
70
    if init_method is None:
        init_method = init_method_normal(args.init_method_std)

    if scaled_init_method is None:
71
72
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
73

74
    # Language model.
75
76
77
78
79
    language_model = TransformerLanguageModel(
        init_method,
        scaled_init_method,
        encoder_attn_mask_type,
        num_tokentypes=num_tokentypes,
80
        add_encoder=add_encoder,
81
82
83
84
85
86
        add_decoder=add_decoder,
        decoder_attn_mask_type=decoder_attn_mask_type,
        add_pooler=add_pooler,
        pre_process=pre_process,
        post_process=post_process
    )
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    # key used for checkpoints.
    language_model_key = 'language_model'

    return language_model, language_model_key


class Pooler(MegatronModule):
    """Pooler layer.

    Pool hidden states of a specific token (for example start of the
    sequence) and add a linear transformation followed by a tanh.

    Arguments:
        hidden_size: hidden size
        init_method: weight initialization method for the linear layer.
            bias is set to zero.
    """
Neel Kant's avatar
Neel Kant committed
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    def __init__(self, hidden_size, init_method):
        super(Pooler, self).__init__()
        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)

    def forward(self, hidden_states, sequence_index=0):
        # hidden_states: [b, s, h]
        # sequence_index: index of the token to pool.
        pooled = hidden_states[:, sequence_index, :]
        pooled = self.dense(pooled)
        pooled = torch.tanh(pooled)
        return pooled


class Embedding(MegatronModule):
    """Language model embeddings.

    Arguments:
        hidden_size: hidden size
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        init_method: weight initialization method
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
Neel Kant's avatar
Neel Kant committed
131

132
133
134
135
136
137
138
139
140
141
142
143
144
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 max_sequence_length,
                 embedding_dropout_prob,
                 init_method,
                 num_tokentypes=0):
        super(Embedding, self).__init__()

        self.hidden_size = hidden_size
        self.init_method = init_method
        self.num_tokentypes = num_tokentypes

145
146
        args = get_args()

147
148
        # Word embeddings (parallel).
        self.word_embeddings = mpu.VocabParallelEmbedding(
149
150
            vocab_size, self.hidden_size,
            init_method=self.init_method)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        self._word_embeddings_key = 'word_embeddings'

        # Position embedding (serial).
        self.position_embeddings = torch.nn.Embedding(
            max_sequence_length, self.hidden_size)
        self._position_embeddings_key = 'position_embeddings'
        # Initialize the position embeddings.
        self.init_method(self.position_embeddings.weight)

        # Token type embedding.
        # Add this as an optional field that can be added through
        # method call so we can load a pretrain model without
        # token types and add them as needed.
        self._tokentype_embeddings_key = 'tokentype_embeddings'
        if self.num_tokentypes > 0:
            self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes,
                                                           self.hidden_size)
            # Initialize the token-type embeddings.
            self.init_method(self.tokentype_embeddings.weight)
        else:
            self.tokentype_embeddings = None

173
174
        self.fp32_residual_connection = args.fp32_residual_connection 
        self.model_parallel_memory_opt = args.model_parallel_memory_opt
175
176
177
        # Embeddings dropout
        self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)

178
179
180
    def zero_parameters(self):
        """Zero out all parameters in embedding."""
        self.word_embeddings.weight.data.fill_(0)
Deepak Narayanan's avatar
Deepak Narayanan committed
181
        self.word_embeddings.weight.shared = True
182
        self.position_embeddings.weight.data.fill_(0)
Deepak Narayanan's avatar
Deepak Narayanan committed
183
        self.position_embeddings.weight.shared = True
184
185
        if self.num_tokentypes > 0:
            self.tokentype_embeddings.weight.data.fill_(0)
Deepak Narayanan's avatar
Deepak Narayanan committed
186
            self.tokentype_embeddings.weight.shared = True
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def add_tokentype_embeddings(self, num_tokentypes):
        """Add token-type embedding. This function is provided so we can add
        token-type embeddings in case the pretrained model does not have it.
        This allows us to load the model normally and then add this embedding.
        """
        if self.tokentype_embeddings is not None:
            raise Exception('tokentype embeddings is already initialized')
        if torch.distributed.get_rank() == 0:
            print('adding embedding for {} tokentypes'.format(num_tokentypes),
                  flush=True)
        self.num_tokentypes = num_tokentypes
        self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes,
                                                       self.hidden_size)
        # Initialize the token-type embeddings.
202
        args = get_args()
203
204
205
206
207
208
209
210
211
212
213
214
215
        self.init_method(self.tokentype_embeddings.weight)

    def forward(self, input_ids, position_ids, tokentype_ids=None):
        # Embeddings.
        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        embeddings = words_embeddings + position_embeddings
        if tokentype_ids is not None:
            assert self.tokentype_embeddings is not None
            embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
        else:
            assert self.tokentype_embeddings is None

216
217
218
219
220
221
222
223
224
225
226
        # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
        # If the input flag for fp32 residual connection is set, convert for float.
        if self.fp32_residual_connection:
            embeddings = embeddings.transpose(0, 1).contiguous().float()
        # Otherwise, leave it as is.
        else:
            embeddings = embeddings.transpose(0, 1).contiguous()

        if self.model_parallel_memory_opt:
            embeddings = mpu.scatter_to_sequence_parallel_region(embeddings)
            
227
        # Dropout.
228
229
230
231
232
        if self.model_parallel_memory_opt:
            with mpu.get_cuda_rng_tracker().fork():
                embeddings = self.embedding_dropout(embeddings)
        else:
            embeddings = self.embedding_dropout(embeddings)
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

        return embeddings

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
        state_dict_[self._word_embeddings_key] \
            = self.word_embeddings.state_dict(destination, prefix, keep_vars)
        state_dict_[self._position_embeddings_key] \
            = self.position_embeddings.state_dict(
                destination, prefix, keep_vars)
        if self.num_tokentypes > 0:
            state_dict_[self._tokentype_embeddings_key] \
                = self.tokentype_embeddings.state_dict(
                    destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Word embedding.
        if self._word_embeddings_key in state_dict:
            state_dict_ = state_dict[self._word_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'word_embeddings' in key:
                    state_dict_[key.split('word_embeddings.')[1]] \
                        = state_dict[key]
        self.word_embeddings.load_state_dict(state_dict_, strict=strict)

        # Position embedding.
        if self._position_embeddings_key in state_dict:
            state_dict_ = state_dict[self._position_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'position_embeddings' in key:
                    state_dict_[key.split('position_embeddings.')[1]] \
                        = state_dict[key]
        self.position_embeddings.load_state_dict(state_dict_, strict=strict)

        # Tokentype embedding.
Neel Kant's avatar
Neel Kant committed
281
        if self.num_tokentypes > 0:
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
            state_dict_ = {}
            if self._tokentype_embeddings_key in state_dict:
                state_dict_ = state_dict[self._tokentype_embeddings_key]
            else:
                # for backward compatibility.
                for key in state_dict.keys():
                    if 'tokentype_embeddings' in key:
                        state_dict_[key.split('tokentype_embeddings.')[1]] \
                            = state_dict[key]
            if len(state_dict_.keys()) > 0:
                self.tokentype_embeddings.load_state_dict(state_dict_,
                                                          strict=strict)
            else:
                print('***WARNING*** expected tokentype embeddings in the '
                      'checkpoint but could not find it', flush=True)


299
class TransformerLanguageModel(MegatronModule):
300
301
302
303
304
305
306
307
308
309
310
    """Transformer language model.

    Arguments:
        transformer_hparams: transformer hyperparameters
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
Neel Kant's avatar
Neel Kant committed
311

312
    def __init__(self,
Mohammad's avatar
Mohammad committed
313
314
                 init_method,
                 output_layer_init_method,
315
                 encoder_attn_mask_type,
316
                 num_tokentypes=0,
317
                 add_encoder=True,
318
                 add_decoder=False,
319
                 decoder_attn_mask_type=AttnMaskType.causal,
320
321
322
323
                 add_pooler=False,
                 pre_process=True,
                 post_process=True):
        super(TransformerLanguageModel, self).__init__()
Mohammad's avatar
Mohammad committed
324
        args = get_args()
325

326
327
        self.pre_process = pre_process
        self.post_process = post_process
Mohammad's avatar
Mohammad committed
328
        self.hidden_size = args.hidden_size
329
        self.num_tokentypes = num_tokentypes
Mohammad's avatar
Mohammad committed
330
        self.init_method = init_method
331
        self.add_encoder = add_encoder
332
        self.encoder_attn_mask_type = encoder_attn_mask_type
333
        self.add_decoder = add_decoder
334
        self.decoder_attn_mask_type = decoder_attn_mask_type
335
        self.add_pooler = add_pooler
336
        self.encoder_hidden_state = None
337

338
        # Embeddings.
339
        if self.pre_process:
340
341
342
343
344
345
346
            self.embedding = Embedding(self.hidden_size,
                                       args.padded_vocab_size,
                                       args.max_position_embeddings,
                                       args.hidden_dropout,
                                       self.init_method,
                                       self.num_tokentypes)
            self._embedding_key = 'embedding'
347

348
        # Transformer.
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        # Encoder (usually set to True, False if part of an encoder-decoder
        # architecture and in encoder-only stage).
        if self.add_encoder:
            self.encoder = ParallelTransformer(
                self.init_method,
                output_layer_init_method,
                self_attn_mask_type=self.encoder_attn_mask_type,
                pre_process=self.pre_process,
                post_process=self.post_process
            )
            self._encoder_key = 'encoder'
        else:
            self.encoder = None

        # Decoder (usually set to False, True if part of an encoder-decoder
        # architecture and in decoder-only stage).
Vijay Korthikanti's avatar
Vijay Korthikanti committed
365
366
367
368
369
        if self.add_decoder:
            self.decoder = ParallelTransformer(
                self.init_method,
                output_layer_init_method,
                layer_type=LayerType.decoder,
370
371
372
                self_attn_mask_type=self.decoder_attn_mask_type,
                pre_process=self.pre_process,
                post_process=self.post_process)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
373
            self._decoder_key = 'decoder'
374
375
        else:
            self.decoder = None
376

377
        if self.post_process:
378
379
380
381
382
            # Pooler.
            if self.add_pooler:
                self.pooler = Pooler(self.hidden_size, self.init_method)
                self._pooler_key = 'pooler'

383
    def set_input_tensor(self, input_tensor):
384
        """ See megatron.model.transformer.set_input_tensor()"""
385
386
387
388
389
390

        # This is usually handled in schedules.py but some inference code still
        # gives us non-lists or None
        if not isinstance(input_tensor, list):
            input_tensor = [input_tensor]

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
        if self.add_encoder and self.add_decoder:
            assert len(input_tensor) == 1, \
                'input_tensor should only be length 1 for stage with both encoder and decoder'
            self.encoder.set_input_tensor(input_tensor[0])
        elif self.add_encoder:
            assert len(input_tensor) == 1, \
                'input_tensor should only be length 1 for stage with only encoder'
            self.encoder.set_input_tensor(input_tensor[0])
        elif self.add_decoder:
            if len(input_tensor) == 2:
                self.decoder.set_input_tensor(input_tensor[0])
                self.encoder_hidden_state = input_tensor[1]
            elif len(input_tensor) == 1:
                self.decoder.set_input_tensor(None)
                self.encoder_hidden_state = input_tensor[0]
            else:
                raise Exception('input_tensor must have either length 1 or 2')
        else:
            raise Exception('Stage must have at least either encoder or decoder')
410
411
412

    def forward(self, enc_input_ids, enc_position_ids, enc_attn_mask,
                dec_input_ids=None, dec_position_ids=None, dec_attn_mask=None,
413
                enc_dec_attn_mask=None, tokentype_ids=None,
mshoeybi's avatar
mshoeybi committed
414
                inference_params=None,
415
                pooling_sequence_index=0,
416
                enc_hidden_states=None, output_enc_hidden=False):
417

418
        # Encoder embedding.
419
        if self.pre_process:
420
421
            encoder_input = self.embedding(enc_input_ids, enc_position_ids,
                                           tokentype_ids=tokentype_ids)
422
        else:
423
            encoder_input = None
424

425
        # Run encoder.
426
        if enc_hidden_states is None:
427
            if self.encoder is not None:
428
429
430
                encoder_output = self.encoder(
                    encoder_input,
                    enc_attn_mask,
mshoeybi's avatar
mshoeybi committed
431
                    inference_params=inference_params)
432
433
            else:
                encoder_output = self.encoder_hidden_state
434
435
436
        else:
            encoder_output = enc_hidden_states.to(encoder_input.dtype)

437
        if self.post_process:
438
439
440
441
            if self.add_pooler:
                pooled_output = self.pooler(encoder_output,
                                            pooling_sequence_index)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
442
443
444
445
        # output_enc_hidden refers to when we just need the encoder's
        # output. For example, it is helpful to compute
        # similarity between two sequences by average pooling
        if not self.add_decoder or output_enc_hidden:
446
            if self.add_pooler and self.post_process:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
447
                return encoder_output, pooled_output
448
            else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
449
450
                return encoder_output

451
452
453
454
455
456
457
458
        # Decoder embedding.
        if self.pre_process:
            decoder_input = self.embedding(dec_input_ids,
                                           dec_position_ids)
        else:
            decoder_input = None

        # Run decoder.
459
        decoder_output = self.decoder(
460
            decoder_input,
461
462
463
            dec_attn_mask,
            encoder_output=encoder_output,
            enc_dec_attn_mask=enc_dec_attn_mask,
mshoeybi's avatar
mshoeybi committed
464
            inference_params=inference_params)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
465

466
        if self.add_pooler and self.post_process:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
467
468
469
            return decoder_output, encoder_output, pooled_output
        else:
            return decoder_output, encoder_output
470
471
472
473
474
475

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
476
        if self.pre_process:
477
478
479
            state_dict_[self._embedding_key] \
                = self.embedding.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
480
481
482
483
        if self.add_encoder:
            state_dict_[self._encoder_key] \
                = self.encoder.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
484
        if self.post_process:
485
486
487
488
            if self.add_pooler:
                state_dict_[self._pooler_key] \
                    = self.pooler.state_dict_for_save_checkpoint(
                        destination, prefix, keep_vars)
489
490
491
        if self.add_decoder:
            state_dict_[self._decoder_key] \
                = self.decoder.state_dict_for_save_checkpoint(
492
493
494
495
496
497
498
499
                    destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Embedding.
500
        if self.pre_process:
501
502
503
504
505
506
507
508
509
            if self._embedding_key in state_dict:
                state_dict_ = state_dict[self._embedding_key]
            else:
                # for backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if '_embeddings' in key:
                        state_dict_[key] = state_dict[key]
            self.embedding.load_state_dict(state_dict_, strict=strict)
510

511
        # Encoder.
512
513
514
515
516
517
        if self.add_encoder:
            if self._encoder_key in state_dict:
                state_dict_ = state_dict[self._encoder_key]
            # For backward compatibility.
            elif 'transformer' in state_dict:
                state_dict_ = state_dict['transformer']
518
            else:
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
                # For backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if 'transformer.' in key:
                        state_dict_[key.split('transformer.')[1]] = state_dict[key]

            # For backward compatibility.
            state_dict_self_attention = {}
            for key in state_dict_.keys():
                if '.attention.' in key:
                    state_dict_self_attention[key.replace(".attention.",
                        ".self_attention.")] = state_dict_[key]
                else:
                    state_dict_self_attention[key] = state_dict_[key]
            state_dict_ = state_dict_self_attention

            self.encoder.load_state_dict(state_dict_, strict=strict)

        # Pooler.
538
        if self.post_process:
539
540
541
542
543
            if self.add_pooler:
                assert 'pooler' in state_dict, \
                    'could not find data for pooler in the checkpoint'
                self.pooler.load_state_dict(state_dict[self._pooler_key],
                                            strict=strict)
544
        # Decoder.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
545
546
        if self.add_decoder:
            assert 'decoder' in state_dict, \
547
                'could not find data for pooler in the checkpoint'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
548
549
            self.decoder.load_state_dict(state_dict[self._decoder_key],
                                         strict=strict)