language_model.py 20.9 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer based language model."""

import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
from megatron import mpu
23
from .module import MegatronModule
24
from megatron.model.enums import LayerType, AttnMaskType
Mohammad's avatar
Mohammad committed
25
26
from megatron.model.transformer import ParallelTransformer
from megatron.model.utils import get_linear_layer
27
from megatron.model.utils import init_method_normal, scaled_init_method_normal
28

29

30
31
32
def parallel_lm_logits(input_, word_embeddings_weight, parallel_output,
                       bias=None):
    """LM logits using word embedding weights."""
33
    args = get_args()
34
    # Parallel logits.
35
36
37
38
39
40
41
42
    if args.async_tensor_model_parallel_allreduce or\
            args.model_parallel_memory_opt:
        input_parallel = input
        model_parallel = mpu.get_tensor_model_parallel_world_size() > 1
        async_grad_allreduce = args.async_tensor_model_parallel_allreduce and \
            model_parallel
        model_parallel_memory_opt = args.model_parallel_memory_opt and \
            model_parallel
43
    else:
44
45
46
47
        input_parallel = mpu.copy_to_tensor_model_parallel_region(input_)
        async_grad_allreduce = False
        model_parallel_memory_opt = False

48
    # Matrix multiply.
49
50
51
52
    logits_parallel = mpu.LinearWithGradAccumulationAndAsyncCommunication.apply(
        input_parallel, word_embeddings_weight, bias,
        args.gradient_accumulation_fusion,
        async_grad_allreduce, model_parallel_memory_opt)
53
54
55
    # Gather if needed.
    if parallel_output:
        return logits_parallel
Mohammad's avatar
Mohammad committed
56

57
    return mpu.gather_from_tensor_model_parallel_region(logits_parallel)
Mohammad's avatar
Mohammad committed
58
59


60
def get_language_model(num_tokentypes, add_pooler,
61
                       encoder_attn_mask_type, init_method=None,
62
63
                       scaled_init_method=None, add_encoder=True,
                       add_decoder=False,
64
65
                       decoder_attn_mask_type=AttnMaskType.causal,
                       pre_process=True, post_process=True):
Mohammad's avatar
Mohammad committed
66
    """Build language model and return along with the key to save."""
67
    args = get_args()
Mohammad's avatar
Mohammad committed
68

69
70
71
72
    if init_method is None:
        init_method = init_method_normal(args.init_method_std)

    if scaled_init_method is None:
73
74
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
75

76
    # Language model.
77
78
79
80
81
    language_model = TransformerLanguageModel(
        init_method,
        scaled_init_method,
        encoder_attn_mask_type,
        num_tokentypes=num_tokentypes,
82
        add_encoder=add_encoder,
83
84
85
86
87
88
        add_decoder=add_decoder,
        decoder_attn_mask_type=decoder_attn_mask_type,
        add_pooler=add_pooler,
        pre_process=pre_process,
        post_process=post_process
    )
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    # key used for checkpoints.
    language_model_key = 'language_model'

    return language_model, language_model_key


class Pooler(MegatronModule):
    """Pooler layer.

    Pool hidden states of a specific token (for example start of the
    sequence) and add a linear transformation followed by a tanh.

    Arguments:
        hidden_size: hidden size
        init_method: weight initialization method for the linear layer.
            bias is set to zero.
    """
Neel Kant's avatar
Neel Kant committed
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    def __init__(self, hidden_size, init_method):
        super(Pooler, self).__init__()
        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)

    def forward(self, hidden_states, sequence_index=0):
        # hidden_states: [b, s, h]
        # sequence_index: index of the token to pool.
        pooled = hidden_states[:, sequence_index, :]
        pooled = self.dense(pooled)
        pooled = torch.tanh(pooled)
        return pooled


class Embedding(MegatronModule):
    """Language model embeddings.

    Arguments:
        hidden_size: hidden size
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        init_method: weight initialization method
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
Neel Kant's avatar
Neel Kant committed
133

134
135
136
137
138
139
140
141
142
143
144
145
146
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 max_sequence_length,
                 embedding_dropout_prob,
                 init_method,
                 num_tokentypes=0):
        super(Embedding, self).__init__()

        self.hidden_size = hidden_size
        self.init_method = init_method
        self.num_tokentypes = num_tokentypes

147
148
        args = get_args()

149
150
        # Word embeddings (parallel).
        self.word_embeddings = mpu.VocabParallelEmbedding(
151
152
            vocab_size, self.hidden_size,
            init_method=self.init_method)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        self._word_embeddings_key = 'word_embeddings'

        # Position embedding (serial).
        self.position_embeddings = torch.nn.Embedding(
            max_sequence_length, self.hidden_size)
        self._position_embeddings_key = 'position_embeddings'
        # Initialize the position embeddings.
        self.init_method(self.position_embeddings.weight)

        # Token type embedding.
        # Add this as an optional field that can be added through
        # method call so we can load a pretrain model without
        # token types and add them as needed.
        self._tokentype_embeddings_key = 'tokentype_embeddings'
        if self.num_tokentypes > 0:
            self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes,
                                                           self.hidden_size)
            # Initialize the token-type embeddings.
            self.init_method(self.tokentype_embeddings.weight)
        else:
            self.tokentype_embeddings = None

        # Embeddings dropout
        self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)

178
179
180
    def zero_parameters(self):
        """Zero out all parameters in embedding."""
        self.word_embeddings.weight.data.fill_(0)
Deepak Narayanan's avatar
Deepak Narayanan committed
181
        self.word_embeddings.weight.shared = True
182
        self.position_embeddings.weight.data.fill_(0)
Deepak Narayanan's avatar
Deepak Narayanan committed
183
        self.position_embeddings.weight.shared = True
184
185
        if self.num_tokentypes > 0:
            self.tokentype_embeddings.weight.data.fill_(0)
Deepak Narayanan's avatar
Deepak Narayanan committed
186
            self.tokentype_embeddings.weight.shared = True
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def add_tokentype_embeddings(self, num_tokentypes):
        """Add token-type embedding. This function is provided so we can add
        token-type embeddings in case the pretrained model does not have it.
        This allows us to load the model normally and then add this embedding.
        """
        if self.tokentype_embeddings is not None:
            raise Exception('tokentype embeddings is already initialized')
        if torch.distributed.get_rank() == 0:
            print('adding embedding for {} tokentypes'.format(num_tokentypes),
                  flush=True)
        self.num_tokentypes = num_tokentypes
        self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes,
                                                       self.hidden_size)
        # Initialize the token-type embeddings.
202
        args = get_args()
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        self.init_method(self.tokentype_embeddings.weight)

    def forward(self, input_ids, position_ids, tokentype_ids=None):
        # Embeddings.
        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        embeddings = words_embeddings + position_embeddings
        if tokentype_ids is not None:
            assert self.tokentype_embeddings is not None
            embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
        else:
            assert self.tokentype_embeddings is None

        # Dropout.
        embeddings = self.embedding_dropout(embeddings)

        return embeddings

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
        state_dict_[self._word_embeddings_key] \
            = self.word_embeddings.state_dict(destination, prefix, keep_vars)
        state_dict_[self._position_embeddings_key] \
            = self.position_embeddings.state_dict(
                destination, prefix, keep_vars)
        if self.num_tokentypes > 0:
            state_dict_[self._tokentype_embeddings_key] \
                = self.tokentype_embeddings.state_dict(
                    destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Word embedding.
        if self._word_embeddings_key in state_dict:
            state_dict_ = state_dict[self._word_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'word_embeddings' in key:
                    state_dict_[key.split('word_embeddings.')[1]] \
                        = state_dict[key]
        self.word_embeddings.load_state_dict(state_dict_, strict=strict)

        # Position embedding.
        if self._position_embeddings_key in state_dict:
            state_dict_ = state_dict[self._position_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'position_embeddings' in key:
                    state_dict_[key.split('position_embeddings.')[1]] \
                        = state_dict[key]
        self.position_embeddings.load_state_dict(state_dict_, strict=strict)

        # Tokentype embedding.
Neel Kant's avatar
Neel Kant committed
266
        if self.num_tokentypes > 0:
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
            state_dict_ = {}
            if self._tokentype_embeddings_key in state_dict:
                state_dict_ = state_dict[self._tokentype_embeddings_key]
            else:
                # for backward compatibility.
                for key in state_dict.keys():
                    if 'tokentype_embeddings' in key:
                        state_dict_[key.split('tokentype_embeddings.')[1]] \
                            = state_dict[key]
            if len(state_dict_.keys()) > 0:
                self.tokentype_embeddings.load_state_dict(state_dict_,
                                                          strict=strict)
            else:
                print('***WARNING*** expected tokentype embeddings in the '
                      'checkpoint but could not find it', flush=True)


284
class TransformerLanguageModel(MegatronModule):
285
286
287
288
289
290
291
292
293
294
295
    """Transformer language model.

    Arguments:
        transformer_hparams: transformer hyperparameters
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
Neel Kant's avatar
Neel Kant committed
296

297
    def __init__(self,
Mohammad's avatar
Mohammad committed
298
299
                 init_method,
                 output_layer_init_method,
300
                 encoder_attn_mask_type,
301
                 num_tokentypes=0,
302
                 add_encoder=True,
303
                 add_decoder=False,
304
                 decoder_attn_mask_type=AttnMaskType.causal,
305
306
307
308
                 add_pooler=False,
                 pre_process=True,
                 post_process=True):
        super(TransformerLanguageModel, self).__init__()
Mohammad's avatar
Mohammad committed
309
        args = get_args()
310

311
312
        self.pre_process = pre_process
        self.post_process = post_process
Mohammad's avatar
Mohammad committed
313
        self.hidden_size = args.hidden_size
314
        self.num_tokentypes = num_tokentypes
Mohammad's avatar
Mohammad committed
315
        self.init_method = init_method
316
        self.add_encoder = add_encoder
317
        self.encoder_attn_mask_type = encoder_attn_mask_type
318
        self.add_decoder = add_decoder
319
        self.decoder_attn_mask_type = decoder_attn_mask_type
320
        self.add_pooler = add_pooler
321
        self.encoder_hidden_state = None
322

323
        # Embeddings.
324
        if self.pre_process:
325
326
327
328
329
330
331
            self.embedding = Embedding(self.hidden_size,
                                       args.padded_vocab_size,
                                       args.max_position_embeddings,
                                       args.hidden_dropout,
                                       self.init_method,
                                       self.num_tokentypes)
            self._embedding_key = 'embedding'
332

333
        # Transformer.
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        # Encoder (usually set to True, False if part of an encoder-decoder
        # architecture and in encoder-only stage).
        if self.add_encoder:
            self.encoder = ParallelTransformer(
                self.init_method,
                output_layer_init_method,
                self_attn_mask_type=self.encoder_attn_mask_type,
                pre_process=self.pre_process,
                post_process=self.post_process
            )
            self._encoder_key = 'encoder'
        else:
            self.encoder = None

        # Decoder (usually set to False, True if part of an encoder-decoder
        # architecture and in decoder-only stage).
Vijay Korthikanti's avatar
Vijay Korthikanti committed
350
351
352
353
354
        if self.add_decoder:
            self.decoder = ParallelTransformer(
                self.init_method,
                output_layer_init_method,
                layer_type=LayerType.decoder,
355
356
357
                self_attn_mask_type=self.decoder_attn_mask_type,
                pre_process=self.pre_process,
                post_process=self.post_process)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
358
            self._decoder_key = 'decoder'
359
360
        else:
            self.decoder = None
361

362
        if self.post_process:
363
364
365
366
367
            # Pooler.
            if self.add_pooler:
                self.pooler = Pooler(self.hidden_size, self.init_method)
                self._pooler_key = 'pooler'

368
    def set_input_tensor(self, input_tensor):
369
        """ See megatron.model.transformer.set_input_tensor()"""
370
371
372
373
374
375

        # This is usually handled in schedules.py but some inference code still
        # gives us non-lists or None
        if not isinstance(input_tensor, list):
            input_tensor = [input_tensor]

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
        if self.add_encoder and self.add_decoder:
            assert len(input_tensor) == 1, \
                'input_tensor should only be length 1 for stage with both encoder and decoder'
            self.encoder.set_input_tensor(input_tensor[0])
        elif self.add_encoder:
            assert len(input_tensor) == 1, \
                'input_tensor should only be length 1 for stage with only encoder'
            self.encoder.set_input_tensor(input_tensor[0])
        elif self.add_decoder:
            if len(input_tensor) == 2:
                self.decoder.set_input_tensor(input_tensor[0])
                self.encoder_hidden_state = input_tensor[1]
            elif len(input_tensor) == 1:
                self.decoder.set_input_tensor(None)
                self.encoder_hidden_state = input_tensor[0]
            else:
                raise Exception('input_tensor must have either length 1 or 2')
        else:
            raise Exception('Stage must have at least either encoder or decoder')
395
396
397

    def forward(self, enc_input_ids, enc_position_ids, enc_attn_mask,
                dec_input_ids=None, dec_position_ids=None, dec_attn_mask=None,
398
                enc_dec_attn_mask=None, tokentype_ids=None,
mshoeybi's avatar
mshoeybi committed
399
                inference_params=None,
400
                pooling_sequence_index=0,
401
                enc_hidden_states=None, output_enc_hidden=False):
402

403
        # Encoder embedding.
404
        if self.pre_process:
405
406
            encoder_input = self.embedding(enc_input_ids, enc_position_ids,
                                           tokentype_ids=tokentype_ids)
407
        else:
408
            encoder_input = None
409

410
        # Run encoder.
411
        if enc_hidden_states is None:
412
            if self.encoder is not None:
413
414
415
                encoder_output = self.encoder(
                    encoder_input,
                    enc_attn_mask,
mshoeybi's avatar
mshoeybi committed
416
                    inference_params=inference_params)
417
418
            else:
                encoder_output = self.encoder_hidden_state
419
420
421
        else:
            encoder_output = enc_hidden_states.to(encoder_input.dtype)

422
        if self.post_process:
423
424
425
426
            if self.add_pooler:
                pooled_output = self.pooler(encoder_output,
                                            pooling_sequence_index)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
427
428
429
430
        # output_enc_hidden refers to when we just need the encoder's
        # output. For example, it is helpful to compute
        # similarity between two sequences by average pooling
        if not self.add_decoder or output_enc_hidden:
431
            if self.add_pooler and self.post_process:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
432
                return encoder_output, pooled_output
433
            else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
434
435
                return encoder_output

436
437
438
439
440
441
442
443
        # Decoder embedding.
        if self.pre_process:
            decoder_input = self.embedding(dec_input_ids,
                                           dec_position_ids)
        else:
            decoder_input = None

        # Run decoder.
444
        decoder_output = self.decoder(
445
            decoder_input,
446
447
448
            dec_attn_mask,
            encoder_output=encoder_output,
            enc_dec_attn_mask=enc_dec_attn_mask,
mshoeybi's avatar
mshoeybi committed
449
            inference_params=inference_params)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
450

451
        if self.add_pooler and self.post_process:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
452
453
454
            return decoder_output, encoder_output, pooled_output
        else:
            return decoder_output, encoder_output
455
456
457
458
459
460

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
461
        if self.pre_process:
462
463
464
            state_dict_[self._embedding_key] \
                = self.embedding.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
465
466
467
468
        if self.add_encoder:
            state_dict_[self._encoder_key] \
                = self.encoder.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
469
        if self.post_process:
470
471
472
473
            if self.add_pooler:
                state_dict_[self._pooler_key] \
                    = self.pooler.state_dict_for_save_checkpoint(
                        destination, prefix, keep_vars)
474
475
476
        if self.add_decoder:
            state_dict_[self._decoder_key] \
                = self.decoder.state_dict_for_save_checkpoint(
477
478
479
480
481
482
483
484
                    destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Embedding.
485
        if self.pre_process:
486
487
488
489
490
491
492
493
494
            if self._embedding_key in state_dict:
                state_dict_ = state_dict[self._embedding_key]
            else:
                # for backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if '_embeddings' in key:
                        state_dict_[key] = state_dict[key]
            self.embedding.load_state_dict(state_dict_, strict=strict)
495

496
        # Encoder.
497
498
499
500
501
502
        if self.add_encoder:
            if self._encoder_key in state_dict:
                state_dict_ = state_dict[self._encoder_key]
            # For backward compatibility.
            elif 'transformer' in state_dict:
                state_dict_ = state_dict['transformer']
503
            else:
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
                # For backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if 'transformer.' in key:
                        state_dict_[key.split('transformer.')[1]] = state_dict[key]

            # For backward compatibility.
            state_dict_self_attention = {}
            for key in state_dict_.keys():
                if '.attention.' in key:
                    state_dict_self_attention[key.replace(".attention.",
                        ".self_attention.")] = state_dict_[key]
                else:
                    state_dict_self_attention[key] = state_dict_[key]
            state_dict_ = state_dict_self_attention

            self.encoder.load_state_dict(state_dict_, strict=strict)

        # Pooler.
523
        if self.post_process:
524
525
526
527
528
            if self.add_pooler:
                assert 'pooler' in state_dict, \
                    'could not find data for pooler in the checkpoint'
                self.pooler.load_state_dict(state_dict[self._pooler_key],
                                            strict=strict)
529
        # Decoder.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
530
531
        if self.add_decoder:
            assert 'decoder' in state_dict, \
532
                'could not find data for pooler in the checkpoint'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
533
534
            self.decoder.load_state_dict(state_dict[self._decoder_key],
                                         strict=strict)