bert_model.py 11 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

import torch

Mohammad's avatar
Mohammad committed
20
from megatron import get_args
mohammad's avatar
mohammad committed
21
from megatron import mpu
22
from megatron.model.enums import AttnMaskType
23
24
from megatron.model.language_model import parallel_lm_logits
from megatron.model.language_model import get_language_model
25
from megatron.model import import_layernorm
26
from megatron.model.utils import openai_gelu, erf_gelu
27
28
29
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
30
from .module import MegatronModule
31

Neel Kant's avatar
Neel Kant committed
32
def bert_attention_mask_func(attention_scores, attention_mask):
33
    attention_scores.masked_fill_(attention_mask, -10000.0)
Neel Kant's avatar
Neel Kant committed
34
35
    return attention_scores

36
def bert_extended_attention_mask(attention_mask):
Neel Kant's avatar
Neel Kant committed
37
38
39
40
41
42
43
44
45
46
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)

47
48
    # Convert attention mask to binary:
    extended_attention_mask = (extended_attention_mask < 0.5)
Neel Kant's avatar
Neel Kant committed
49

50
    return extended_attention_mask
Neel Kant's avatar
Neel Kant committed
51
52
53
54
55
56
57
58
59
60
61

def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids


62
63
64
65
66
67
68
69
class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
70
        parallel_output: whether output logits being distributed or not.
71
    """
Neel Kant's avatar
Neel Kant committed
72

73
74
75
76
77
    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

78
        args = get_args()
Neel Kant's avatar
Neel Kant committed
79

80
        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
81
        mpu.set_tensor_model_parallel_attributes(self.bias, True, 0, 1)
82
83
84
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
85
        LayerNorm = import_layernorm(args.fp32_residual_connection)
86
        self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
87
88
89
        self.gelu = torch.nn.functional.gelu
        if args.openai_gelu:
            self.gelu = openai_gelu
90
        elif args.onnx_safe:
Boris Fomitchev's avatar
Boris Fomitchev committed
91
            self.gelu = erf_gelu
92
93
94

    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
95
        hidden_states = self.gelu(hidden_states)
96
97
98
99
100
101
102
103
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output


104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def post_language_model_processing(lm_output, pooled_output,
                                   lm_head, binary_head,
                                   lm_labels,
                                   logit_weights,
                                   fp16_lm_cross_entropy):
    # Output.
    lm_logits = lm_head(
        lm_output, logit_weights)

    binary_logits = None
    if binary_head is not None:
        binary_logits = binary_head(pooled_output)

    if lm_labels is None:
        return lm_logits, binary_logits
    else:
        if fp16_lm_cross_entropy:
            assert lm_logits.dtype == torch.half
            lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits, lm_labels)
        else:
            lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits.float(),
                                                       lm_labels)
        return lm_loss, binary_logits


129
class BertModelBase(MegatronModule):
130
131
    """Bert Language model."""

Mohammad's avatar
Mohammad committed
132
    def __init__(self, num_tokentypes=2, add_binary_head=True,
133
                 parallel_output=True):
134
        super(BertModelBase, self).__init__()
Mohammad's avatar
Mohammad committed
135
        args = get_args()
136

mohammad's avatar
mohammad committed
137
        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
138
139
        self.add_binary_head = add_binary_head
        self.parallel_output = parallel_output
140

Mohammad's avatar
Mohammad committed
141
142
143
        init_method = init_method_normal(args.init_method_std)
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
Neel Kant's avatar
Neel Kant committed
144

145
        self.language_model, self._language_model_key = get_language_model(
Mohammad's avatar
Mohammad committed
146
            attention_mask_func=bert_attention_mask_func,
147
            num_tokentypes=num_tokentypes,
148
            add_pooler=self.add_binary_head,
149
            encoder_attn_mask_type=AttnMaskType.padding,
150
            init_method=init_method,
151
            scaled_init_method=scaled_init_method)
152

153
        self.initialize_word_embeddings(init_method_normal)
154
        if mpu.is_pipeline_last_stage():
155
156
157
158
159
160
161
162
163
164
165
            self.lm_head = BertLMHead(
                self.word_embeddings_weight().size(0),
                args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
            self._lm_head_key = 'lm_head'
            self.binary_head = None
            if self.add_binary_head:
                self.binary_head = get_linear_layer(args.hidden_size, 2,
                                                    init_method)
                self._binary_head_key = 'binary_head'

    def forward(self, bert_model_input, attention_mask,
mohammad's avatar
mohammad committed
166
                tokentype_ids=None, lm_labels=None):
167

168
        extended_attention_mask = bert_extended_attention_mask(attention_mask)
169
170

        kwargs = {}
171
        if mpu.is_pipeline_first_stage():
172
173
174
175
            input_ids = bert_model_input
            position_ids = bert_position_ids(input_ids)
            args = [input_ids, position_ids, extended_attention_mask]
            kwargs['tokentype_ids'] = tokentype_ids
176
        else:
177
178
            args = [bert_model_input, extended_attention_mask]
        lm_output = self.language_model(*args, **kwargs)
179
        if mpu.is_pipeline_last_stage() and self.add_binary_head:
180
            lm_output, pooled_output = lm_output
mohammad's avatar
mohammad committed
181
        else:
182
183
            pooled_output = None

184
        if mpu.is_pipeline_last_stage():
185
186
187
188
189
190
191
            return post_language_model_processing(lm_output, pooled_output,
                                                  self.lm_head, self.binary_head,
                                                  lm_labels,
                                                  self.word_embeddings_weight(),
                                                  self.fp16_lm_cross_entropy)
        else:
            return lm_output
192
193
194
195
196
197
198
199
200
201


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
202
            destination, prefix, keep_vars)
203
        if mpu.is_pipeline_last_stage():
204
205
206
            state_dict_[self._lm_head_key] \
                = self.lm_head.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
207
        if mpu.is_pipeline_last_stage() and self.add_binary_head:
208
209
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
210
        # Save word_embeddings.
211
        if mpu.is_pipeline_last_stage() and not mpu.is_pipeline_first_stage():
212
213
            state_dict_[self._word_embeddings_for_head_key] \
                = self.word_embeddings.state_dict(destination, prefix, keep_vars)
214
215
216
217
218
219
220
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
221
        if mpu.is_pipeline_last_stage():
222
223
            self.lm_head.load_state_dict(
                state_dict[self._lm_head_key], strict=strict)
224
        if mpu.is_pipeline_last_stage() and self.add_binary_head:
Neel Kant's avatar
Neel Kant committed
225
226
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)
227
        # Load word_embeddings.
228
        if mpu.is_pipeline_last_stage() and not mpu.is_pipeline_first_stage():
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
            self.word_embeddings.load_state_dict(
                state_dict[self._word_embeddings_for_head_key], strict=strict)


class BertModel(BertModelBase):

    def __init__(self, num_tokentypes=2, add_binary_head=True,
                 parallel_output=True):
        super(BertModel, self).__init__(
            num_tokentypes=num_tokentypes,
            add_binary_head=add_binary_head,
            parallel_output=parallel_output)

    def forward(self, input_ids, attention_mask,
                tokentype_ids=None, lm_labels=None):
        return super(BertModel, self).forward(
            input_ids,
            attention_mask,
            tokentype_ids=tokentype_ids,
            lm_labels=lm_labels)


class BertModelFirstStage(BertModelBase):

    def __init__(self, num_tokentypes=2):
        super(BertModelFirstStage, self).__init__(
            num_tokentypes=num_tokentypes)

    def forward(self, input_ids, attention_mask,
                tokentype_ids=None):
        return super(BertModelFirstStage, self).forward(
            input_ids,
            attention_mask,
            tokentype_ids=tokentype_ids)


class BertModelIntermediateStage(BertModelBase):

    def __init__(self, num_tokentypes=2):
        super(BertModelIntermediateStage, self).__init__(
            num_tokentypes=num_tokentypes)

    def forward(self, hidden_state, attention_mask):
        return super(BertModelIntermediateStage, self).forward(
            hidden_state,
            attention_mask)


class BertModelLastStage(BertModelBase):

    def __init__(self, num_tokentypes=2, add_binary_head=True,
                 parallel_output=True):
        super(BertModelLastStage, self).__init__(
            num_tokentypes=num_tokentypes,
            add_binary_head=add_binary_head,
            parallel_output=parallel_output)

    def forward(self, hidden_state, attention_mask,
                lm_labels=None):
        return super(BertModelLastStage, self).forward(
            hidden_state,
            attention_mask,
            lm_labels=lm_labels)