pretrain_ict.py 6.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain BERT for Inverse Cloze Task"""
17
18

from functools import partial
Mostofa Patwary's avatar
Mostofa Patwary committed
19
import math
20
21

import torch
Neel Kant's avatar
Neel Kant committed
22
import torch.distributed as dist
23
24
import torch.nn.functional as F

Neel Kant's avatar
Neel Kant committed
25
26
from megatron import get_args
from megatron import print_rank_0
27
from megatron import get_timers
28
from megatron import mpu
29
from megatron.data.biencoder_dataset_utils import get_ict_batch
30
from megatron.data.dataset_utils import build_train_valid_test_datasets
31
from megatron.model.biencoder_model import biencoder_model_provider
32
from megatron.training import pretrain
33
from megatron.utils import average_losses_across_data_parallel_group
34
35


36
def pretrain_ict_model_provider(pre_process=True, post_process=True):
37
    args = get_args()
Mostofa Patwary's avatar
Mostofa Patwary committed
38

39
40
41
42
    model = biencoder_model_provider(
                only_context_model=False,
                only_query_model=False,
                biencoder_shared_query_context_model=\
43
44
                args.biencoder_shared_query_context_model,
                pre_process=pre_process, post_process=post_process)
Mostofa Patwary's avatar
Mostofa Patwary committed
45

Mostofa Patwary's avatar
Mostofa Patwary committed
46
    return model
47

mohammad's avatar
mohammad committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def get_group_world_size_rank():

    group = mpu.get_data_parallel_group()
    rank = torch.distributed.get_rank(group=group)
    world_size = torch.distributed.get_world_size(group=group)

    return group, rank, world_size


class AllgatherFromDataParallelRegion(torch.autograd.Function):

    @staticmethod
    def forward(ctx, input_):
        assert input_.dim() == 2
        group, rank, world_size = get_group_world_size_rank()

        tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
        tensor_list[rank] = input_
        torch.distributed.all_gather(tensor_list, input_, group=group)

        output = torch.cat(tensor_list, dim=0).contiguous()

        return output


    @staticmethod
    def backward(ctx, grad_output):
        group, rank, world_size = get_group_world_size_rank()

77
78
79
        assert grad_output.shape[0] % world_size == 0
        dim_size = grad_output.shape[0] // world_size
        output_list = torch.split(grad_output, dim_size, dim=0)
mohammad's avatar
mohammad committed
80

81
82
        # get chunk from this rank
        output = output_list[rank].contiguous()
mohammad's avatar
mohammad committed
83
84
        return output

85
def loss_func(output_tensor):
Neel Kant's avatar
Neel Kant committed
86
    args = get_args()
87
    query_logits, context_logits = output_tensor
Neel Kant's avatar
Neel Kant committed
88

Mostofa Patwary's avatar
Mostofa Patwary committed
89
90
    micro_batch_size = query_logits.shape[0]
    # recall we assert that tensor_model_parallel_size == 1
91
92
93
    assert mpu.get_tensor_model_parallel_world_size() == 1, \
        "Model parallel size > 1 not supported for ICT"

94
95
    global_batch_size = dist.get_world_size() * micro_batch_size
    all_query_logits = AllgatherFromDataParallelRegion.apply(query_logits)
96
    all_context_logits = AllgatherFromDataParallelRegion.apply(context_logits)
Mostofa Patwary's avatar
Mostofa Patwary committed
97
98
99
100
101
102
103
104
105
106
107

    # scores are inner products between query and context embeddings
    retrieval_scores = torch.matmul(all_query_logits,
                        torch.transpose(all_context_logits, 0, 1))
    # scaling the retriever scores
    if args.retriever_score_scaling:
        retrieval_scores = retrieval_scores / math.sqrt(args.hidden_size)

    softmax_scores = F.log_softmax(retrieval_scores, dim=1)
    sorted_vals, sorted_indices = torch.topk(softmax_scores,
                                    k=softmax_scores.shape[1], sorted=True)
108

109
    def topk_accuracy(k):
Mostofa Patwary's avatar
Mostofa Patwary committed
110
111
        return torch.cuda.FloatTensor([sum([int(i in sorted_indices[i, :k]) \
            for i in range(global_batch_size)]) / global_batch_size])
Neel Kant's avatar
Neel Kant committed
112

113
    topk_accs = [topk_accuracy(int(k)) for k in args.retriever_report_topk_accuracies]
114

Mostofa Patwary's avatar
Mostofa Patwary committed
115
116
117
118
119
120
    labels = torch.arange(global_batch_size).long().cuda()
    loss = F.nll_loss(softmax_scores, labels, reduction='mean')
    reduced_losses = average_losses_across_data_parallel_group([loss, *topk_accs])

    # Scale the retrieval loss
    loss = loss * mpu.get_data_parallel_world_size()
121

Mostofa Patwary's avatar
Mostofa Patwary committed
122
123
    # create stats_dict with retrieval loss and all specified top-k accuracies
    topk_acc_dict = {'top{}_acc'.format(k): v * 100 for k, v in \
124
                        zip(args.retriever_report_topk_accuracies, reduced_losses[1:])}
Mostofa Patwary's avatar
Mostofa Patwary committed
125
126
    stats_dict = dict(loss=reduced_losses[0], **topk_acc_dict)
    return loss, stats_dict
127
128


129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

def forward_step(data_iterator, model):
    """Forward step."""
    args = get_args()
    timers = get_timers()

    # Get the batch.
    timers('batch-generator').start()
    query_tokens, query_mask, \
    context_tokens, context_mask, context_indices = get_ict_batch(data_iterator)
    timers('batch-generator').stop()

    # Query and Context Types
    query_types = torch.cuda.LongTensor(*query_tokens.shape).fill_(0)
    context_types = torch.cuda.LongTensor(*context_tokens.shape).fill_(0)

    # Forward model.
    output_tensor = model(query_tokens, query_mask, query_types, context_tokens,
                        context_mask, context_types)

    return output_tensor, partial(loss_func)

Neel Kant's avatar
Neel Kant committed
151
152
def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid and test datasets."""
153
    args = get_args()
Neel Kant's avatar
Neel Kant committed
154
    print_rank_0('> building train, validation, and test datasets '
Neel Kant's avatar
Neel Kant committed
155
                 'for BERT ICT...')
156

Neel Kant's avatar
Neel Kant committed
157
158
159
160
161
162
163
164
165
166
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        max_seq_length=args.seq_length,
        masked_lm_prob=args.mask_prob,
        short_seq_prob=args.short_seq_prob,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup),
Mostofa Patwary's avatar
Mostofa Patwary committed
167
        binary_head=False,
168
        dataset_type='ict')
Neel Kant's avatar
Neel Kant committed
169
    print_rank_0("> finished creating BERT ICT datasets ...")
170

Neel Kant's avatar
Neel Kant committed
171
    return train_ds, valid_ds, test_ds
172
173
174


if __name__ == "__main__":
Mostofa Patwary's avatar
Mostofa Patwary committed
175
176
177
    pretrain(train_valid_test_datasets_provider,
             pretrain_ict_model_provider,
             forward_step,
178
             args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})