pretrain_ict.py 5.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain BERT for Inverse Cloze Task"""

import torch
Neel Kant's avatar
Neel Kant committed
19
import torch.distributed as dist
20
21
import torch.nn.functional as F

Neel Kant's avatar
Neel Kant committed
22
23
from megatron import get_args
from megatron import print_rank_0
24
from megatron import get_timers
25
from megatron import mpu
26
from megatron.data.dataset_utils import build_train_valid_test_datasets
27
from megatron.model import ICTBertModel
28
from megatron.training import pretrain
29
30
from megatron.utils import reduce_losses

Neel Kant's avatar
Neel Kant committed
31
num_batches = 0
32

Neel Kant's avatar
Neel Kant committed
33

34
def general_model_provider(only_query_model=False, only_block_model=False):
35
    """Build the model."""
36
    args = get_args()
Neel Kant's avatar
Neel Kant committed
37
38
39
40
41
    assert args.ict_head_size is not None, \
        "Need to specify --ict-head-size to provide an ICTBertModel"

    assert args.model_parallel_size == 1, \
        "Model parallel size > 1 not supported for ICT"
42
43

    print_rank_0('building ICTBertModel...')
44

45
    # simpler to just keep using 2 tokentypes since the LM we initialize with has 2 tokentypes
46
    model = ICTBertModel(
47
        ict_head_size=args.ict_head_size,
48
        num_tokentypes=2,
Neel Kant's avatar
Neel Kant committed
49
50
51
        parallel_output=True,
        only_query_model=only_query_model,
        only_block_model=only_block_model)
52
53
54
55

    return model


56
57
58
59
def model_provider():
    return general_model_provider(False, False)


60
def get_batch(data_iterator):
61
    # Items and their type.
62
63
    keys = ['query_tokens', 'query_pad_mask',
            'block_tokens', 'block_pad_mask', 'block_data']
64
65
66
    datatype = torch.int64

    # Broadcast data.
67
    if data_iterator is None:
68
        data = None
69
70
    else:
        data = next(data_iterator)
71
72
73
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
Neel Kant's avatar
Neel Kant committed
74
75
76
77
    query_tokens = data_b['query_tokens'].long()
    query_pad_mask = data_b['query_pad_mask'].long()
    block_tokens = data_b['block_tokens'].long()
    block_pad_mask = data_b['block_pad_mask'].long()
78
    block_indices = data_b['block_data'].long()
79

80
81
    return query_tokens, query_pad_mask,\
           block_tokens, block_pad_mask, block_indices
82
83


84
def forward_step(data_iterator, model):
85
    """Forward step."""
Neel Kant's avatar
Neel Kant committed
86
    args = get_args()
87
    timers = get_timers()
88
89
90

    # Get the batch.
    timers('batch generator').start()
91
92
    query_tokens, query_pad_mask, \
    block_tokens, block_pad_mask, block_indices = get_batch(data_iterator)
93
94
95
    timers('batch generator').stop()

    # Forward model.
Neel Kant's avatar
Neel Kant committed
96
97
98
99
100
101
102
    query_logits, block_logits = model(query_tokens, query_pad_mask, block_tokens, block_pad_mask)

    data_parallel_size = dist.get_world_size() / args.model_parallel_size
    batch_size = query_logits.shape[0]
    global_batch_size = int(batch_size * data_parallel_size)

    all_logits_shape = (int(global_batch_size), int(query_logits.shape[1]))
103
104
    all_query_logits = torch.cuda.FloatTensor(*all_logits_shape).type(query_logits.dtype).fill_(0.0)
    all_block_logits = all_query_logits.clone()
Neel Kant's avatar
Neel Kant committed
105

Neel Kant's avatar
Neel Kant committed
106
    # record this processes' data
Neel Kant's avatar
Neel Kant committed
107
108
109
    all_query_logits[args.rank * batch_size:(args.rank + 1) * batch_size] = query_logits
    all_block_logits[args.rank * batch_size:(args.rank + 1) * batch_size] = block_logits

Neel Kant's avatar
Neel Kant committed
110
    # merge data from all processes
Neel Kant's avatar
Neel Kant committed
111
112
113
    dist.all_reduce(all_query_logits)
    dist.all_reduce(all_block_logits)

114
    # scores are inner products between query and block embeddings
Neel Kant's avatar
Neel Kant committed
115
    retrieval_scores = all_query_logits.float().matmul(torch.transpose(all_block_logits, 0, 1).float())
116
    softmaxed = F.softmax(retrieval_scores, dim=1)
117
    sorted_vals, sorted_indices = torch.topk(softmaxed, k=softmaxed.shape[1], sorted=True)
118

119
    def topk_accuracy(k):
Neel Kant's avatar
Neel Kant committed
120
121
        return torch.cuda.FloatTensor([sum([int(i in sorted_indices[i, :k]) for i in range(global_batch_size)]) / global_batch_size])

122
    topk_accs = [topk_accuracy(int(k)) for k in args.report_topk_accuracies]
Neel Kant's avatar
Neel Kant committed
123
    retrieval_loss = torch.nn.CrossEntropyLoss()(retrieval_scores, torch.arange(global_batch_size).long().cuda())
124
125
126
127
128
    reduced_losses = reduce_losses([retrieval_loss, *topk_accs])

    # create stats_dict with retrieval loss and all specified top-k accuracies
    topk_acc_dict = {'top{}_acc'.format(k): v for k, v in zip(args.report_topk_accuracies, reduced_losses[1:])}
    stats_dict = dict(retrieval_loss=reduced_losses[0], **topk_acc_dict)
129

130
    return retrieval_loss, stats_dict
131
132


Neel Kant's avatar
Neel Kant committed
133
134
def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid and test datasets."""
135
    args = get_args()
Neel Kant's avatar
Neel Kant committed
136
    print_rank_0('> building train, validation, and test datasets '
Neel Kant's avatar
Neel Kant committed
137
                 'for BERT ICT...')
138

Neel Kant's avatar
Neel Kant committed
139
140
141
142
143
144
145
146
147
148
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        max_seq_length=args.seq_length,
        masked_lm_prob=args.mask_prob,
        short_seq_prob=args.short_seq_prob,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup),
149
        dataset_type='ict')
Neel Kant's avatar
Neel Kant committed
150
    print_rank_0("> finished creating BERT ICT datasets ...")
151

Neel Kant's avatar
Neel Kant committed
152
    return train_ds, valid_ds, test_ds
153
154
155


if __name__ == "__main__":
Neel Kant's avatar
Neel Kant committed
156
    pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
157
             args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})