pretrain_ict.py 6.21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain BERT for Inverse Cloze Task"""
Mostofa Patwary's avatar
Mostofa Patwary committed
17
import math
18
19

import torch
Neel Kant's avatar
Neel Kant committed
20
import torch.distributed as dist
21
22
import torch.nn.functional as F

Neel Kant's avatar
Neel Kant committed
23
24
from megatron import get_args
from megatron import print_rank_0
25
from megatron import get_timers
26
from megatron import mpu
27
from megatron.data.biencoder_dataset_utils import get_ict_batch
28
from megatron.data.dataset_utils import build_train_valid_test_datasets
29
from megatron.model.biencoder_model import biencoder_model_provider
30
from megatron.training import pretrain
31
from megatron.utils import average_losses_across_data_parallel_group
32
33


Neel Kant's avatar
Neel Kant committed
34
def pretrain_ict_model_provider():
35
    args = get_args()
36
37
38
    #args.only_context_model = False
    #args.only_query_model = False
    #model = biencoder_model_provider()
Mostofa Patwary's avatar
Mostofa Patwary committed
39
 
40
41
42
43
44
    model = biencoder_model_provider(
                only_context_model=False,
                only_query_model=False,
                biencoder_shared_query_context_model=\
                    args.biencoder_shared_query_context_model)
Mostofa Patwary's avatar
Mostofa Patwary committed
45
    return model
46

mohammad's avatar
mohammad committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def get_group_world_size_rank():

    group = mpu.get_data_parallel_group()
    rank = torch.distributed.get_rank(group=group)
    world_size = torch.distributed.get_world_size(group=group)

    return group, rank, world_size


class AllgatherFromDataParallelRegion(torch.autograd.Function):

    @staticmethod
    def forward(ctx, input_):
        assert input_.dim() == 2
        group, rank, world_size = get_group_world_size_rank()

        tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
        tensor_list[rank] = input_
        torch.distributed.all_gather(tensor_list, input_, group=group)

        output = torch.cat(tensor_list, dim=0).contiguous()

        return output


    @staticmethod
    def backward(ctx, grad_output):
        group, rank, world_size = get_group_world_size_rank()

76
77
78
        assert grad_output.shape[0] % world_size == 0
        dim_size = grad_output.shape[0] // world_size
        output_list = torch.split(grad_output, dim_size, dim=0)
mohammad's avatar
mohammad committed
79

80
81
        # get chunk from this rank
        output = output_list[rank].contiguous()
mohammad's avatar
mohammad committed
82
83
        return output

84
def forward_step(data_iterator, model, input_tensor):
85
    """Forward step."""
Neel Kant's avatar
Neel Kant committed
86
    args = get_args()
87
    timers = get_timers()
88
89

    # Get the batch.
mohammad's avatar
mohammad committed
90
    timers('batch-generator').start()
Mostofa Patwary's avatar
Mostofa Patwary committed
91
92
    query_tokens, query_mask, \
    context_tokens, context_mask, context_indices = get_ict_batch(data_iterator)
mohammad's avatar
mohammad committed
93
    timers('batch-generator').stop()
94

Mostofa Patwary's avatar
Mostofa Patwary committed
95
96
97
    # Query and Context Types
    query_types = torch.cuda.LongTensor(*query_tokens.shape).fill_(0)
    context_types = torch.cuda.LongTensor(*context_tokens.shape).fill_(0)
98

Mostofa Patwary's avatar
Mostofa Patwary committed
99
100
101
102
    # Forward model.
    query_logits, context_logits = model(query_tokens, query_mask,
                                    query_types, context_tokens,
                                    context_mask, context_types)
Neel Kant's avatar
Neel Kant committed
103

Mostofa Patwary's avatar
Mostofa Patwary committed
104
105
    micro_batch_size = query_logits.shape[0]
    # recall we assert that tensor_model_parallel_size == 1
106
107
108
    assert mpu.get_tensor_model_parallel_world_size() == 1, \
        "Model parallel size > 1 not supported for ICT"

109
110
    global_batch_size = dist.get_world_size() * micro_batch_size
    all_query_logits = AllgatherFromDataParallelRegion.apply(query_logits)
111
    all_context_logits = AllgatherFromDataParallelRegion.apply(context_logits)
Mostofa Patwary's avatar
Mostofa Patwary committed
112
113
114
115
116
117
118
119
120
121
122

    # scores are inner products between query and context embeddings
    retrieval_scores = torch.matmul(all_query_logits,
                        torch.transpose(all_context_logits, 0, 1))
    # scaling the retriever scores
    if args.retriever_score_scaling:
        retrieval_scores = retrieval_scores / math.sqrt(args.hidden_size)

    softmax_scores = F.log_softmax(retrieval_scores, dim=1)
    sorted_vals, sorted_indices = torch.topk(softmax_scores,
                                    k=softmax_scores.shape[1], sorted=True)
123

124
    def topk_accuracy(k):
Mostofa Patwary's avatar
Mostofa Patwary committed
125
126
        return torch.cuda.FloatTensor([sum([int(i in sorted_indices[i, :k]) \
            for i in range(global_batch_size)]) / global_batch_size])
Neel Kant's avatar
Neel Kant committed
127

128
    topk_accs = [topk_accuracy(int(k)) for k in args.retriever_report_topk_accuracies]
129

Mostofa Patwary's avatar
Mostofa Patwary committed
130
131
132
133
134
135
    labels = torch.arange(global_batch_size).long().cuda()
    loss = F.nll_loss(softmax_scores, labels, reduction='mean')
    reduced_losses = average_losses_across_data_parallel_group([loss, *topk_accs])

    # Scale the retrieval loss
    loss = loss * mpu.get_data_parallel_world_size()
136

Mostofa Patwary's avatar
Mostofa Patwary committed
137
138
    # create stats_dict with retrieval loss and all specified top-k accuracies
    topk_acc_dict = {'top{}_acc'.format(k): v * 100 for k, v in \
139
                        zip(args.retriever_report_topk_accuracies, reduced_losses[1:])}
Mostofa Patwary's avatar
Mostofa Patwary committed
140
141
    stats_dict = dict(loss=reduced_losses[0], **topk_acc_dict)
    return loss, stats_dict
142
143


Neel Kant's avatar
Neel Kant committed
144
145
def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid and test datasets."""
146
    args = get_args()
Neel Kant's avatar
Neel Kant committed
147
    print_rank_0('> building train, validation, and test datasets '
Neel Kant's avatar
Neel Kant committed
148
                 'for BERT ICT...')
149

Neel Kant's avatar
Neel Kant committed
150
151
152
153
154
155
156
157
158
159
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        max_seq_length=args.seq_length,
        masked_lm_prob=args.mask_prob,
        short_seq_prob=args.short_seq_prob,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup),
Mostofa Patwary's avatar
Mostofa Patwary committed
160
        binary_head=False,
161
        dataset_type='ict')
Neel Kant's avatar
Neel Kant committed
162
    print_rank_0("> finished creating BERT ICT datasets ...")
163

Neel Kant's avatar
Neel Kant committed
164
    return train_ds, valid_ds, test_ds
165
166
167


if __name__ == "__main__":
Mostofa Patwary's avatar
Mostofa Patwary committed
168
169
170
    pretrain(train_valid_test_datasets_provider,
             pretrain_ict_model_provider,
             forward_step,
171
             args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})