checkpointing.py 17.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Input/output checkpointing."""

import os
import random
import sys
import numpy as np

import torch

25
26
27
from megatron import (get_args,
                      mpu,
                      print_rank_0,
28
29
                      update_num_microbatches,
                      utils)
30

Vijay Korthikanti's avatar
Vijay Korthikanti committed
31
32
33
34
_CHECKPOINT_VERSION = None

def set_checkpoint_version(value):
    global _CHECKPOINT_VERSION
Jared Casper's avatar
Jared Casper committed
35
36
37
    if _CHECKPOINT_VERSION is not None:
        assert _CHECKPOINT_VERSION == value, \
            "checkpoint versions do not match"
Vijay Korthikanti's avatar
Vijay Korthikanti committed
38
39
40
41
42
    _CHECKPOINT_VERSION = value

def get_checkpoint_version():
    global _CHECKPOINT_VERSION
    return _CHECKPOINT_VERSION
43
44
45

def check_checkpoint_args(checkpoint_args):
    """Ensure fixed arguments for a model are the same for the input
46
    arguments and the one retrieved from checkpoint."""
47
48
    args = get_args()

49
50
51
52
53
    def _compare(arg_name, old_arg_name=None):
        if old_arg_name is not None:
            checkpoint_value = getattr(checkpoint_args, old_arg_name)
        else:
            checkpoint_value = getattr(checkpoint_args, arg_name)
54
55
56
57
58
59
60
61
62
        args_value = getattr(args, arg_name)
        error_message = '{} value from checkpoint ({}) is not equal to the ' \
                        'input argument value ({}).'.format(
                            arg_name, checkpoint_value, args_value)
        assert checkpoint_value == args_value, error_message

    _compare('num_layers')
    _compare('hidden_size')
    _compare('num_attention_heads')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
    if args.vocab_file:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        _compare('max_position_embeddings')
65
66
67
        _compare('make_vocab_size_divisible_by')
        _compare('padded_vocab_size')
        _compare('tokenizer_type')
68
69
70
71
72
73
    if get_checkpoint_version() < 3.0:
        _compare('tensor_model_parallel_size',
                 old_arg_name='model_parallel_size')
    if get_checkpoint_version() >= 3.0:
        _compare('tensor_model_parallel_size')
        _compare('pipeline_model_parallel_size')
74
75
76
77
78
79
80
81
82
83


def ensure_directory_exists(filename):
    """Build filename's path if it does not already exists."""
    dirname = os.path.dirname(filename)
    if not os.path.exists(dirname):
        os.makedirs(dirname)


def get_checkpoint_name(checkpoints_path, iteration,
84
                        release=False):
85
86
87
88
89
    """A unified checkpoint name."""
    if release:
        directory = 'release'
    else:
        directory = 'iter_{:07d}'.format(iteration)
90
91
    # Use both the tensor and pipeline MP rank.
    if mpu.get_pipeline_model_parallel_world_size() == 1:
92
93
        return os.path.join(checkpoints_path, directory,
                            'mp_rank_{:02d}'.format(
94
                                mpu.get_tensor_model_parallel_rank()),
95
                            'model_optim_rng.pt')
96
    return os.path.join(checkpoints_path, directory,
97
                        'mp_rank_{:02d}_{:03d}'.format(
98
99
                            mpu.get_tensor_model_parallel_rank(),
                            mpu.get_pipeline_model_parallel_rank()),
100
101
102
103
104
105
106
107
108
                        'model_optim_rng.pt')


def get_checkpoint_tracker_filename(checkpoints_path):
    """Tracker file rescords the latest chckpoint during
    training to restart from."""
    return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')


109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def read_metadata(tracker_filename):
    # Read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
    iteration = 0
    release = False
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        try:
            iteration = int(metastring)
        except ValueError:
            release = metastring == 'release'
            if not release:
                print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
                    tracker_filename))
                sys.exit()
    assert iteration > 0 or release, 'error parsing metadata file {}'.format(
        tracker_filename)

    # Make sure all the ranks read the same meta data.
    iters_cuda = torch.cuda.LongTensor(
        torch.distributed.get_world_size()).fill_(0)
    iters_cuda[torch.distributed.get_rank()] = iteration
    torch.distributed.all_reduce(iters_cuda)

    # We should now have all the same iteration.
    # If not, print a warning and chose the maximum
    # iteration across all ranks.
    max_iter = iters_cuda.max().item()
    min_iter = iters_cuda.min().item()
    if max_iter == min_iter:
        print_rank_0('> meta data was loaded successfully ...')
    else:
        for rank in range(torch.distributed.get_world_size()):
            if iters_cuda[rank] != max_iters:
                print_rank_0('WARNING: on rank {} found iteration {} in the '
                             'meta data while max iteration across the ranks '
                             'is {}, replacing it with max iteration.'.format(
                                 rank, iters_cuda[rank], max_iter))
    return max_iter, release


150
151
152
153
154
def save_checkpoint(iteration, model, optimizer, lr_scheduler):
    """Save a model checkpoint."""
    args = get_args()

    # Only rank zero of the data parallel writes to the disk.
155
    model = utils.unwrap_model(model)
156

Jared Casper's avatar
Jared Casper committed
157
158
    print_rank_0('saving checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))
159

Jared Casper's avatar
Jared Casper committed
160
    if not torch.distributed.is_initialized() or mpu.get_data_parallel_rank() == 0:
161
162
163
164

        # Arguments, iteration, and model.
        state_dict = {}
        state_dict['args'] = args
165
        state_dict['checkpoint_version'] = 3.0
166
        state_dict['iteration'] = iteration
167
168
169
170
171
172
        if len(model) == 1:
            state_dict['model'] = model[0].state_dict_for_save_checkpoint()
        else:
            for i in range(len(model)):
                mpu.set_virtual_pipeline_model_parallel_rank(i)
                state_dict['model%d' % i] = model[i].state_dict_for_save_checkpoint()
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

        # Optimizer stuff.
        if not args.no_save_optim:
            if optimizer is not None:
                state_dict['optimizer'] = optimizer.state_dict()
            if lr_scheduler is not None:
                state_dict['lr_scheduler'] = lr_scheduler.state_dict()

        # RNG states.
        if not args.no_save_rng:
            state_dict['random_rng_state'] = random.getstate()
            state_dict['np_rng_state'] = np.random.get_state()
            state_dict['torch_rng_state'] = torch.get_rng_state()
            state_dict['cuda_rng_state'] = torch.cuda.get_rng_state()
            state_dict['rng_tracker_states'] \
                = mpu.get_cuda_rng_tracker().get_states()

        # Save.
        checkpoint_name = get_checkpoint_name(args.save, iteration)
        ensure_directory_exists(checkpoint_name)
        torch.save(state_dict, checkpoint_name)

    # Wait so everyone is done (necessary)
Jared Casper's avatar
Jared Casper committed
196
197
198
199
200
201
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0('  successfully saved checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))

202
    # And update the latest iteration
Jared Casper's avatar
Jared Casper committed
203
    if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
204
205
206
207
208
        tracker_filename = get_checkpoint_tracker_filename(args.save)
        with open(tracker_filename, 'w') as f:
            f.write(str(iteration))

    # Wait so everyone is done (not necessary)
Jared Casper's avatar
Jared Casper committed
209
210
    if torch.distributed.is_initialized():
        torch.distributed.barrier()
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
def _transpose_first_dim(t, num_splits, num_splits_first, model):
    input_shape = t.size()
    # We use a self_attention module but the values extracted aren't
    # specific to self attention so should work for cross attention as well
    while hasattr(model, 'module'):
        model = model.module
    attention_module = model.language_model.encoder.layers[0].self_attention
    hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head
    num_attention_heads_per_partition = attention_module.num_attention_heads_per_partition
    if num_splits_first:
        """[num_splits * np * hn, h]
        -->(view) [num_splits, np, hn, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_splits, num_attention_heads_per_partition,
             hidden_size_per_attention_head) + input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(0, 1).contiguous()
    else:
        """[np * hn * num_splits, h]
        -->(view) [np, hn, num_splits, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_attention_heads_per_partition,
             hidden_size_per_attention_head, num_splits) +\
             input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(1, 2).contiguous()
    t = t.view(*input_shape)

    return t
249

Mostofa Patwary's avatar
Mostofa Patwary committed
250
251
252
253
254
def fix_query_key_value_ordering(model, checkpoint_version):
    """Fix up query/key/value matrix ordering if checkpoint
    version is smaller than 2.0
    """
    if checkpoint_version < 2.0:
255
256
257
        if isinstance(model, list):
            assert len(model)==1
            model = model[0]
Mostofa Patwary's avatar
Mostofa Patwary committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        for name, param in model.named_parameters():
            if name.endswith(('.query_key_value.weight', '.query_key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 3, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 3, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
            if name.endswith(('.key_value.weight', '.key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 2, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 2, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
        print_rank_0(" succesfully fixed query-key-values ordering for"
                    " checkpoint version {}".format(checkpoint_version))

280
def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load', strict=True):
281
282
283
284
285
    """Load a model checkpoint and return the iteration.
    strict (bool): whether to strictly enforce that the keys in
        :attr:`state_dict` of the checkpoint match the names of
        parameters and buffers in model.
    """
286
    args = get_args()
287
    load_dir = getattr(args, load_arg)
288

289
    model = utils.unwrap_model(model)
290

291
    # Read the tracker file and set the iteration.
292
    tracker_filename = get_checkpoint_tracker_filename(load_dir)
293
294
295
296
297
298
299
300
301
302
303

    # If no tracker file, return iretation zero.
    if not os.path.isfile(tracker_filename):
        print_rank_0('WARNING: could not find the metadata file {} '.format(
            tracker_filename))
        print_rank_0('    will not load any checkpoints and will start from '
                     'random')
        return 0

    # Otherwise, read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
304
    iteration, release = read_metadata(tracker_filename)
305
306

    # Checkpoint.
307
    checkpoint_name = get_checkpoint_name(load_dir, iteration, release)
Jared Casper's avatar
Jared Casper committed
308
    print_rank_0(f' loading checkpoint from {args.load} at iteration {iteration}')
309
310
311
312
313

    # Load the checkpoint.
    try:
        state_dict = torch.load(checkpoint_name, map_location='cpu')
    except ModuleNotFoundError:
mohammad's avatar
mohammad committed
314
        from megatron.fp16_deprecated import loss_scaler
315
316
317
        # For backward compatibility.
        print_rank_0(' > deserializing using the old code structure ...')
        sys.modules['fp16.loss_scaler'] = sys.modules[
mohammad's avatar
mohammad committed
318
319
320
            'megatron.fp16_deprecated.loss_scaler']
        sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
            'megatron.fp16_deprecated.loss_scaler']
321
322
        state_dict = torch.load(checkpoint_name, map_location='cpu')
        sys.modules.pop('fp16.loss_scaler', None)
mohammad's avatar
mohammad committed
323
        sys.modules.pop('megatron.fp16.loss_scaler', None)
324
    except BaseException as e:
325
        print_rank_0('could not load the checkpoint')
326
        print_rank_0(e)
327
328
        sys.exit()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
329
330
331
    # set checkpoint version
    set_checkpoint_version(state_dict.get('checkpoint_version', 0))

332
333
334
335
336
337
338
    # Set iteration.
    if args.finetune or release:
        iteration = 0
    else:
        try:
            iteration = state_dict['iteration']
        except KeyError:
Neel Kant's avatar
Neel Kant committed
339
            try:  # Backward compatible with older checkpoints
340
341
342
343
344
345
346
347
                iteration = state_dict['total_iters']
            except KeyError:
                print_rank_0('A metadata file exists but unable to load '
                             'iteration from checkpoint {}, exiting'.format(
                                 checkpoint_name))
                sys.exit()

    # Check arguments.
mohammad's avatar
mohammad committed
348
349
    assert args.consumed_train_samples == 0
    assert args.consumed_valid_samples == 0
350
351
352
    if 'args' in state_dict:
        checkpoint_args = state_dict['args']
        check_checkpoint_args(checkpoint_args)
353
354
        args.consumed_train_samples = getattr(checkpoint_args,
                                              'consumed_train_samples', 0)
mohammad's avatar
mohammad committed
355
        update_num_microbatches(consumed_samples=args.consumed_train_samples)
356
357
        args.consumed_valid_samples = getattr(checkpoint_args,
                                              'consumed_valid_samples', 0)
358
359
360
361
    else:
        print_rank_0('could not find arguments in the checkpoint ...')

    # Model.
362
363
364
365
366
367
    if len(model) == 1:
        model[0].load_state_dict(state_dict['model'], strict=strict)
    else:
        for i in range(len(model)):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            model[i].load_state_dict(state_dict['model%d' % i], strict=strict)
368

Mostofa Patwary's avatar
Mostofa Patwary committed
369
370
371
372
    # Fix up query/key/value matrix ordering if needed
    checkpoint_version = get_checkpoint_version()
    print_rank_0(f' checkpoint version {checkpoint_version}')
    fix_query_key_value_ordering(model, checkpoint_version)
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

    # Optimizer.
    if not release and not args.finetune and not args.no_load_optim:
        try:
            if optimizer is not None:
                optimizer.load_state_dict(state_dict['optimizer'])
            if lr_scheduler is not None:
                lr_scheduler.load_state_dict(state_dict['lr_scheduler'])
        except KeyError:
            print_rank_0('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
            random.setstate(state_dict['random_rng_state'])
            np.random.set_state(state_dict['np_rng_state'])
            torch.set_rng_state(state_dict['torch_rng_state'])
            torch.cuda.set_rng_state(state_dict['cuda_rng_state'])
395
396
397
            # Check for empty states array
            if not state_dict['rng_tracker_states']:
                raise KeyError
398
399
400
            mpu.get_cuda_rng_tracker().set_states(
                state_dict['rng_tracker_states'])
        except KeyError:
401
            print_rank_0('Unable to load rng state from checkpoint {}. '
402
                         'Specify --no-load-rng or --finetune to prevent '
403
                         'attempting to load the rng state, '
404
405
406
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

Jared Casper's avatar
Jared Casper committed
407
408
409
410
411
412
    # Some utilities want to load a checkpoint without distributed being initialized
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0(f'  successfully loaded checkpoint from {args.load} '
                 f'at iteration {iteration}')
413
414

    return iteration
Neel Kant's avatar
Neel Kant committed
415
416


417
418
419
420
421
422
def load_biencoder_checkpoint(model, only_query_model=False,
        only_context_model=False, custom_load_path=None):
    """
    selectively load retrieval models for indexing/retrieving 
    from saved checkpoints
    """
Neel Kant's avatar
Neel Kant committed
423
424
425

    args = get_args()

426
    model = utils.unwrap_model(model)
Neel Kant's avatar
Neel Kant committed
427

428
    load_path = custom_load_path if custom_load_path is not None else args.load
Neel Kant's avatar
Neel Kant committed
429
430
431
432
433
434
435
436
437
438
439

    tracker_filename = get_checkpoint_tracker_filename(load_path)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    checkpoint_name = get_checkpoint_name(load_path, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
440
    ret_state_dict = state_dict['model']
Neel Kant's avatar
Neel Kant committed
441
442

    if only_query_model:
443
        ret_state_dict.pop('context_model')
Mostofa Patwary's avatar
Mostofa Patwary committed
444
    if only_context_model:
445
        ret_state_dict.pop('query_model')
Neel Kant's avatar
Neel Kant committed
446

447
448
    assert len(model) == 1
    model[0].load_state_dict(ret_state_dict)
Neel Kant's avatar
Neel Kant committed
449
450
451
452
453
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

Neel Kant's avatar
Neel Kant committed
454
    return model
455