dataset.py 8.81 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
"""TO BE ADDED """

import random
import time

import numpy as np
import torch
from torch.utils.data import Dataset

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
10
from dataset_utils import build_training_sample
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
11
12


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class AlbertDataSet(Dataset):

    def __init__(self, indexed_dataset, tokenizer, num_epochs,
                 masked_lm_prob, max_seq_length, short_seq_prob, seed):

        # Params to store.
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length

        # Indexed dataset.
        self.indexed_dataset = indexed_dataset

        # Build the samples mapping.
        self.samples_mapping = build_training_samples_mapping(
            indexed_dataset,
            num_epochs,
            self.max_seq_length,
            short_seq_prob,
            self.seed)

        # Vocab stuff.
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = tokenizer.inv_vocab
        self.cls_id = tokenizer.vocab['[CLS]']
        self.sep_id = tokenizer.vocab['[SEP]']
        self.mask_id = tokenizer.vocab['[MASK]']
        self.pad_id = tokenizer.vocab['[PAD]']


    def __len__(self):
        return self.samples.shape[0]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
45
46

    def __getitem__(self, idx):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
47
48
49
50
51
52
53
54
55
56
57
58
        rng = random.Random(self.seed + idx)
        start_index, end_index, seq_length = self.samples_mapping[idx]
        sample = []
        for index in range(start_index, end_index):
            sample.append(self.indexed_dataset[index])
        return build_training_sample(sample, seq_length,
                                     self.max_seq_length,
                                     self.vocab_id_list,
                                     self.vocab_id_to_token_dict,
                                     self.cls_id, self.sep_id,
                                     self.mask_id, self.pad_id,
                                     self.masked_lm_prob, rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101


def get_target_seq_length(max_num_tokens, short_seq_prob, np_rng):
    """With probability `short_seq_prob` generate a smaller sequence lenght."""
    if np_rng.random() < short_seq_prob:
        return np_rng.randint(2, max_num_tokens + 1)
    return max_num_tokens


def build_training_samples_mapping(indexed_dataset, num_epochs, max_seq_length,
                                   short_seq_prob, seed):
    """Build a mapping to reconstruct training samples."""

    start_time = time.time()
    print('> building training samples mapping ...')

    # RNG:
    np_rng = np.random.RandomState(seed=seed)

    # List of start sentence index and end sentence index (end is exclusive)
    # to retrieve.
    samples = []

    # Account for [CLS], [SEP], [SEP]
    max_num_tokens = max_seq_length - 3

    # Number of documents processed:
    total_docs = 0
    # Number of documents that are skipped:
    skipped_docs = 0
    # Number of empty documents:
    empty_docs = 0

    # For each epoch:
    for epoch in range(num_epochs):
        # For each document:
        for doc_index in range(indexed_dataset.num_docs):
            if epoch == 0:
                total_docs += 1

            # Document sentences are in [sent_index_first, sent_index_last).
            sent_index_first = indexed_dataset.doc_idx[doc_index]
            sent_index_last = indexed_dataset.doc_idx[doc_index+1]
102
            assert sent_index_last >= sent_index_first
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

            # Empty docs.
            if (sent_index_last - sent_index_first) == 0:
                if epoch == 0:
                    print('***WARNING*** document {} is empty'.format(
                        doc_index))
                    empty_docs += 1
                continue
            # Skip documents that only have one sentences.
            if (sent_index_last - sent_index_first) == 1:
                if epoch == 0:
                    print('***WARNING*** document {} has only one sentnece, '
                          'skipping ...'.format(doc_index))
                    skipped_docs += 1
                continue

            # Loop through sentences.
            sent_index = sent_index_first
            target_seq_length = get_target_seq_length(max_num_tokens,
122
                                                      short_seq_prob, np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
123
124
125
126
            size = 0
            while sent_index < sent_index_last:

                # Get the size.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
127
                assert indexed_dataset.sizes[sent_index] > 0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
128
129
130
131
132
133
134
                size += indexed_dataset.sizes[sent_index]
                sent_index += 1

                # If we have reached the target length.
                exceeded_target_size = (size >= target_seq_length)
                # If only one sentence is left in the document.
                only_one_sent_left = (sent_index == (sent_index_last - 1))
135
136
                # If we have at least two sentneces.
                have_more_than_one_sent = (sent_index - sent_index_first) > 1
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
137
138
                # If we have reached end of the document.
                reached_end_of_doc = (sent_index == sent_index_last)
139
140
                if (exceeded_target_size and not only_one_sent_left and
                    have_more_than_one_sent) or reached_end_of_doc:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
141
142
143
                    assert (sent_index - sent_index_first) > 1
                    assert size > 1
                    # Add the sample.
144
145
                    samples.append([sent_index_first, sent_index,
                                    target_seq_length])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
146
147
148
149
                    # Reset indices
                    sent_index_first = sent_index
                    target_seq_length = get_target_seq_length(max_num_tokens,
                                                              short_seq_prob,
150
                                                              np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
                    size = 0
                    num_sentences = 0

    # Convert to numpy array.
    samples_np = np.array(samples, dtype=np.int64)
    # Shuffle.
    np_rng.shuffle(samples_np)
    elapsed_time = time.time() - start_time

    # Print some stats:
    print('\n***************************** info *****************************')
    print('   elapsed time (sec) ..................... {}'.format(elapsed_time))
    print('   number of epochs ....................... {}'.format(num_epochs))
    print('   number of samples ...................... {}'.format(
        samples_np.shape[0]))
    print('   number of documents .................... {}'.format(total_docs))
    print('   number of empty documents .............. {}'.format(empty_docs))
    print('   number of documents with one sentence .. {}'.format(skipped_docs))
    print('****************************************************************\n')

    return samples_np


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
174
175
# WILL BE REPLACED WITH JARED'S
class JaredDataset(object):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
176

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
177
178
179
180
181
    def __init__(self, doc_idx, sizes, sentences):
        self.doc_idx = doc_idx
        self.num_docs = len(self.doc_idx) - 1
        self.sizes = sizes
        self.sentences = sentences
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
182
183

    def __getitem__(self, idx):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
184
        return self.sentences[idx]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
185
186
187
188
189
190



if __name__ == '__main__':

    print('dataset ...')
191
192
193
194
195
196
197
198
199
200
201
202
203
204

    from bert_tokenization import FullTokenizer
    import json
    import nltk
    nltk.download('punkt')

    def document_generator_provider(input_file):
        with open(input_file, 'r') as ifile:
            for document in ifile:
                data = json.loads(document)
                text = data['text']
                sentences = []
                for line in text.split('\n'):
                    if line != '\n':
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
205
206
207
                        sent = nltk.tokenize.sent_tokenize(line)
                        if sent:
                            sentences.extend(sent)
208
209
                yield sentences

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
210
    input_file = '/raid/mshoeybi/data/albert/sample/samples_1000.json'
211
212
213
214
215
216
217
218
219
220
    vocab_file = '/raid/mshoeybi/data/albert/bert_vocab/vocab.txt'

    tokenizer = FullTokenizer(vocab_file, do_lower_case=True)
    document_generator = document_generator_provider(input_file)

    doc_idx = [0]
    sizes = []
    sentences_list = []

    for sentences in document_generator:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
221
        num_sent = 0
222
223
        for sentence in sentences:
            tokens = tokenizer.tokenize(sentence)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
224
225
226
227
228
229
230
231
232
233
234
235
            if tokens:
                ids = tokenizer.convert_tokens_to_ids(tokens)
                if len(ids) == 0:
                    print('****************')
                    print(sentence)
                    print(tokens)
                    print(ids)
                    print('****************')
                sizes.append(len(ids))
                sentences_list.append(ids)
                num_sent += 1
        doc_idx.append(num_sent)
236
237
238
239
240
241
    for i in range(1, len(doc_idx)):
        doc_idx[i] += doc_idx[i-1]

    indexed_dataset = JaredDataset(doc_idx, sizes, sentences_list)
    dataset = AlbertDataSet(indexed_dataset=indexed_dataset,
                            tokenizer=tokenizer,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
242
                            num_epochs=10,
243
244
245
246
                            masked_lm_prob=0.15,
                            max_seq_length=512,
                            short_seq_prob=0.1,
                            seed=1234)