dataset.py 8.27 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
"""TO BE ADDED """

import random
import time

import numpy as np
import torch
from torch.utils.data import Dataset


# WILL BE REPLACED WITH JARED'S
class JaredDataset(object):

14
15
    def __init__(self, doc_idx, sizes, sentences):
        self.doc_idx = doc_idx
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
16
        self.num_docs = len(self.doc_idx) - 1
17
18
        self.sizes = sizes
        self.sentences = sentences
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

    def __getitem__(self, idx):
        return self.sentences[idx]


def get_target_seq_length(max_num_tokens, short_seq_prob, np_rng):
    """With probability `short_seq_prob` generate a smaller sequence lenght."""
    if np_rng.random() < short_seq_prob:
        return np_rng.randint(2, max_num_tokens + 1)
    return max_num_tokens


def build_training_samples_mapping(indexed_dataset, num_epochs, max_seq_length,
                                   short_seq_prob, seed):
    """Build a mapping to reconstruct training samples."""

    start_time = time.time()
    print('> building training samples mapping ...')

    # RNG:
    np_rng = np.random.RandomState(seed=seed)

    # List of start sentence index and end sentence index (end is exclusive)
    # to retrieve.
    samples = []

    # Account for [CLS], [SEP], [SEP]
    max_num_tokens = max_seq_length - 3

    # Number of documents processed:
    total_docs = 0
    # Number of documents that are skipped:
    skipped_docs = 0
    # Number of empty documents:
    empty_docs = 0

    # For each epoch:
    for epoch in range(num_epochs):
        # For each document:
        for doc_index in range(indexed_dataset.num_docs):
            if epoch == 0:
                total_docs += 1

            # Document sentences are in [sent_index_first, sent_index_last).
            sent_index_first = indexed_dataset.doc_idx[doc_index]
            sent_index_last = indexed_dataset.doc_idx[doc_index+1]
65
            assert sent_index_last >= sent_index_first
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

            # Empty docs.
            if (sent_index_last - sent_index_first) == 0:
                if epoch == 0:
                    print('***WARNING*** document {} is empty'.format(
                        doc_index))
                    empty_docs += 1
                continue
            # Skip documents that only have one sentences.
            if (sent_index_last - sent_index_first) == 1:
                if epoch == 0:
                    print('***WARNING*** document {} has only one sentnece, '
                          'skipping ...'.format(doc_index))
                    skipped_docs += 1
                continue

            # Loop through sentences.
            sent_index = sent_index_first
            target_seq_length = get_target_seq_length(max_num_tokens,
85
                                                      short_seq_prob, np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
86
87
88
89
90
91
92
93
94
95
96
            size = 0
            while sent_index < sent_index_last:

                # Get the size.
                size += indexed_dataset.sizes[sent_index]
                sent_index += 1

                # If we have reached the target length.
                exceeded_target_size = (size >= target_seq_length)
                # If only one sentence is left in the document.
                only_one_sent_left = (sent_index == (sent_index_last - 1))
97
98
                # If we have at least two sentneces.
                have_more_than_one_sent = (sent_index - sent_index_first) > 1
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
99
100
                # If we have reached end of the document.
                reached_end_of_doc = (sent_index == sent_index_last)
101
102
                if (exceeded_target_size and not only_one_sent_left and
                    have_more_than_one_sent) or reached_end_of_doc:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
103
104
105
                    assert (sent_index - sent_index_first) > 1
                    assert size > 1
                    # Add the sample.
106
107
                    samples.append([sent_index_first, sent_index,
                                    target_seq_length])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
108
109
110
111
                    # Reset indices
                    sent_index_first = sent_index
                    target_seq_length = get_target_seq_length(max_num_tokens,
                                                              short_seq_prob,
112
                                                              np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
                    size = 0
                    num_sentences = 0

    # Convert to numpy array.
    samples_np = np.array(samples, dtype=np.int64)
    # Shuffle.
    np_rng.shuffle(samples_np)
    elapsed_time = time.time() - start_time

    # Print some stats:
    print('\n***************************** info *****************************')
    print('   elapsed time (sec) ..................... {}'.format(elapsed_time))
    print('   number of epochs ....................... {}'.format(num_epochs))
    print('   number of samples ...................... {}'.format(
        samples_np.shape[0]))
    print('   number of documents .................... {}'.format(total_docs))
    print('   number of empty documents .............. {}'.format(empty_docs))
    print('   number of documents with one sentence .. {}'.format(skipped_docs))
    print('****************************************************************\n')

    return samples_np


class AlbertDataSet(Dataset):

138
139
    def __init__(self, indexed_dataset, tokenizer, num_epochs,
                 masked_lm_prob, max_seq_length, short_seq_prob, seed):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
140
141
142
143
144
145

        # Params to store.
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length

146
147
        # Indexed dataset.
        self.indexed_dataset = indexed_dataset
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

        # Build the samples mapping.
        self.samples_mapping = build_training_samples_mapping(
            indexed_dataset,
            num_epochs,
            self.max_seq_length,
            short_seq_prob,
            self.seed)

        # Vocab stuff.
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = tokenizer.inv_vocab
        self.cls_id = tokenizer.vocab['[CLS]']
        self.sep_id = tokenizer.vocab['[SEP]']
        self.mask_id = tokenizer.vocab['[MASK]']
        self.pad_id = tokenizer.vocab['[PAD]']


    def __len__(self):
        return self.samples.shape[0]

    def __getitem__(self, idx):
        rng = random.Random(self.seed + idx)
        start_index, end_index = self.samples_mapping[idx]
        sample = []
        for index in range(start_index, end_index):
            sample.append(self.indexed_dataset[index])
        return build_training_sample(sample, self.vocab_id_list,
                                     self.vocab_id_to_token_dict,
                                     self.cls_id, self.sep_id,
                                     self.mask_id, self.pad_id,
                                     self.masked_lm_prob, self.max_seq_length,
                                     rng)



if __name__ == '__main__':

    print('dataset ...')
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    from bert_tokenization import FullTokenizer
    import json
    import nltk
    nltk.download('punkt')

    def document_generator_provider(input_file):
        with open(input_file, 'r') as ifile:
            for document in ifile:
                data = json.loads(document)
                text = data['text']
                sentences = []
                for line in text.split('\n'):
                    if line != '\n':
                        sentences.extend(nltk.tokenize.sent_tokenize(line))
                yield sentences

    input_file = '/raid/mshoeybi/data/albert/sample/samples_11.json'
    vocab_file = '/raid/mshoeybi/data/albert/bert_vocab/vocab.txt'

    tokenizer = FullTokenizer(vocab_file, do_lower_case=True)
    document_generator = document_generator_provider(input_file)

    doc_idx = [0]
    sizes = []
    sentences_list = []

    for sentences in document_generator:
        doc_idx.append(len(sentences))
        for sentence in sentences:
            tokens = tokenizer.tokenize(sentence)
            ids = tokenizer.convert_tokens_to_ids(tokens)
            sizes.append(len(ids))
            sentences_list.append(ids)
    for i in range(1, len(doc_idx)):
        doc_idx[i] += doc_idx[i-1]

    indexed_dataset = JaredDataset(doc_idx, sizes, sentences_list)
    dataset = AlbertDataSet(indexed_dataset=indexed_dataset,
                            tokenizer=tokenizer,
                            num_epochs=3,
                            masked_lm_prob=0.15,
                            max_seq_length=512,
                            short_seq_prob=0.1,
                            seed=1234)