dataset.py 6.41 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""TO BE ADDED """

import random
import time

import numpy as np
import torch
from torch.utils.data import Dataset


# WILL BE REPLACED WITH JARED'S
class JaredDataset(object):

    def __init__(self):
        self.doc_idx = []
        self.num_docs = len(self.doc_idx) - 1
        self.sizes = []
        self.sentences = []

    def __getitem__(self, idx):
        return self.sentences[idx]


def get_target_seq_length(max_num_tokens, short_seq_prob, np_rng):
    """With probability `short_seq_prob` generate a smaller sequence lenght."""
    if np_rng.random() < short_seq_prob:
        return np_rng.randint(2, max_num_tokens + 1)
    return max_num_tokens


def build_training_samples_mapping(indexed_dataset, num_epochs, max_seq_length,
                                   short_seq_prob, seed):
    """Build a mapping to reconstruct training samples."""

    start_time = time.time()
    print('> building training samples mapping ...')

    # RNG:
    np_rng = np.random.RandomState(seed=seed)

    # List of start sentence index and end sentence index (end is exclusive)
    # to retrieve.
    samples = []

    # Account for [CLS], [SEP], [SEP]
    max_num_tokens = max_seq_length - 3

    # Number of documents processed:
    total_docs = 0
    # Number of documents that are skipped:
    skipped_docs = 0
    # Number of empty documents:
    empty_docs = 0

    # For each epoch:
    for epoch in range(num_epochs):
        # For each document:
        for doc_index in range(indexed_dataset.num_docs):
            if epoch == 0:
                total_docs += 1

            # Document sentences are in [sent_index_first, sent_index_last).
            sent_index_first = indexed_dataset.doc_idx[doc_index]
            sent_index_last = indexed_dataset.doc_idx[doc_index+1]
            assert sent_index_last >= sent_index_first:

            # Empty docs.
            if (sent_index_last - sent_index_first) == 0:
                if epoch == 0:
                    print('***WARNING*** document {} is empty'.format(
                        doc_index))
                    empty_docs += 1
                continue
            # Skip documents that only have one sentences.
            if (sent_index_last - sent_index_first) == 1:
                if epoch == 0:
                    print('***WARNING*** document {} has only one sentnece, '
                          'skipping ...'.format(doc_index))
                    skipped_docs += 1
                continue

            # Loop through sentences.
            sent_index = sent_index_first
            target_seq_length = get_target_seq_length(max_num_tokens,
                                                      short_seq_prob, rng)
            size = 0
            while sent_index < sent_index_last:

                # Get the size.
                size += indexed_dataset.sizes[sent_index]
                sent_index += 1

                # If we have reached the target length.
                exceeded_target_size = (size >= target_seq_length)
                # If only one sentence is left in the document.
                only_one_sent_left = (sent_index == (sent_index_last - 1))
                # If we have reached end of the document.
                reached_end_of_doc = (sent_index == sent_index_last)
                if (exceeded_target_size and not only_one_sent_left) or \
                   reached_end_of_doc:
                    assert (sent_index - sent_index_first) > 1
                    assert size > 1
                    # Add the sample.
                    samples.append([sent_index_first, sent_index])
                    # Reset indices
                    sent_index_first = sent_index
                    target_seq_length = get_target_seq_length(max_num_tokens,
                                                              short_seq_prob,
                                                              rng)
                    size = 0
                    num_sentences = 0

    # Convert to numpy array.
    samples_np = np.array(samples, dtype=np.int64)
    # Shuffle.
    np_rng.shuffle(samples_np)
    elapsed_time = time.time() - start_time

    # Print some stats:
    print('\n***************************** info *****************************')
    print('   elapsed time (sec) ..................... {}'.format(elapsed_time))
    print('   number of epochs ....................... {}'.format(num_epochs))
    print('   number of samples ...................... {}'.format(
        samples_np.shape[0]))
    print('   number of documents .................... {}'.format(total_docs))
    print('   number of empty documents .............. {}'.format(empty_docs))
    print('   number of documents with one sentence .. {}'.format(skipped_docs))
    print('****************************************************************\n')

    return samples_np


class AlbertDataSet(Dataset):

    def __init__(self, tokenizer, num_epochs, masked_lm_prob, max_seq_length
                 short_seq_prob, seed):

        # Params to store.
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length

        # Build the indexed dataset.
        self.indexed_dataset = JaredDataset()

        # Build the samples mapping.
        self.samples_mapping = build_training_samples_mapping(
            indexed_dataset,
            num_epochs,
            self.max_seq_length,
            short_seq_prob,
            self.seed)

        # Vocab stuff.
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = tokenizer.inv_vocab
        self.cls_id = tokenizer.vocab['[CLS]']
        self.sep_id = tokenizer.vocab['[SEP]']
        self.mask_id = tokenizer.vocab['[MASK]']
        self.pad_id = tokenizer.vocab['[PAD]']


    def __len__(self):
        return self.samples.shape[0]

    def __getitem__(self, idx):
        rng = random.Random(self.seed + idx)
        start_index, end_index = self.samples_mapping[idx]
        sample = []
        for index in range(start_index, end_index):
            sample.append(self.indexed_dataset[index])
        return build_training_sample(sample, self.vocab_id_list,
                                     self.vocab_id_to_token_dict,
                                     self.cls_id, self.sep_id,
                                     self.mask_id, self.pad_id,
                                     self.masked_lm_prob, self.max_seq_length,
                                     rng)



if __name__ == '__main__':

    print('dataset ...')