text_generation_utils.py 22.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Utilities for generating text."""
17

18
import copy
Mohammad's avatar
Mohammad committed
19
20
21
22
import json
import os
import time

23
24
25
import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
26
27
28
from megatron import get_args
from megatron import get_tokenizer
from megatron import mpu
29
from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model
Jared Casper's avatar
Jared Casper committed
30
from megatron.p2p_communication import recv_forward, send_forward
31

32
33
34
35
36
# These are needed to unwrap the model, would be nice to put these in megatron.utils if possible?
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module

37
38
39
40
def get_batch(context_tokens):
    """Generate batch from context tokens."""
    args = get_args()
    tokenizer = get_tokenizer()
41

42
    # Move to GPU.
43
    tokens = context_tokens.view(args.micro_batch_size, -1).contiguous().cuda()
44
45
    # Get the attention mask and postition ids.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
46
        tokens,
47
        tokenizer.eod,
48
        args.reset_position_ids,
49
        args.reset_attention_mask,
50
        args.eod_mask_loss)
51

52
53
    return tokens, attention_mask, position_ids

54

55
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
56
57
58
59
    """ This function has been mostly taken from huggingface conversational
     ai code at
         https://medium.com/huggingface/how-to-build-a-state-of-the-art-
              conversational-ai-with-transfer-learning-2d818ac26313 """
60
61

    if top_k > 0:
62
63
        # Remove all tokens with a probability less than the
        # last token of the top-k
64
65
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
66

67
    if top_p > 0.0:
68
69
70
71
72
        # Cconvert to 1D
        sorted_logits, sorted_indices = torch.sort(
            logits, descending=True, dim=-1)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1),
                                        dim=-1)
73
74
75

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
76
77
78
79
        # Shift the indices to the right to keep also the first token
        # above the threshold
        sorted_indices_to_remove[..., 1:] \
            = sorted_indices_to_remove[..., :-1].clone()
80
        sorted_indices_to_remove[..., 0] = 0
81
82
83
        for i in range(sorted_indices.size(0)):
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
            logits[i][indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
84

85
86
87
    return logits


88
def generate_samples_input_from_file(model):
Mohammad's avatar
Mohammad committed
89

90
91
    args = get_args()
    tokenizer = get_tokenizer()
92

93
94
95
    # Read the sample file and open the output file.
    assert args.sample_input_file is not None, \
        'sample input file is not provided.'
96
    if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0:
97
98
99
100
        fname = open(args.sample_input_file, "r")
        all_raw_text = fname.readlines()
        input_count = len(all_raw_text)
        input_pos = 0
101
102
        if args.sample_output_file is None:
            sample_output_file = args.sample_input_file + ".out"
103
            print('`sample-output-file` not specified, setting '
Mohammad's avatar
Mohammad committed
104
                  'it to {}'.format(sample_output_file))
Mostofa Patwary's avatar
Mostofa Patwary committed
105
106
        else:
            sample_output_file = args.sample_output_file
107
        fname_out = open(sample_output_file, "w+")
108

Mohammad's avatar
Mohammad committed
109
    context_count = 0
110
111
112
    model.eval()
    with torch.no_grad():
        while True:
Mohammad's avatar
Mohammad committed
113
            terminate_runs = 0
114
            raw_text_len = 0
115

116
117
            if mpu.is_pipeline_first_stage() \
               and mpu.get_tensor_model_parallel_rank() == 0:
118
119
120
121
                raw_text = all_raw_text[input_pos]
                input_pos += 1
                if input_pos == input_count:
                    raw_text = "stop"
122
                raw_text_len = len(raw_text)
123
124
125
126

                if "stop" in raw_text:
                    terminate_runs = 1
                else:
127
                    context_tokens = tokenizer.tokenize(raw_text)
128
129
                    context_length = len(context_tokens)

130
                    if context_length >= (args.seq_length // 2):
Neel Kant's avatar
Neel Kant committed
131
132
                        print("\nContext length", context_length,
                              "\nPlease give smaller context (half of the "
133
                              "sequence length)!", flush=True)
134
135
                        continue
            else:
136
                context_tokens = tokenizer.tokenize("EMPTY TEXT")
137
                context_length = 0
Mohammad's avatar
Mohammad committed
138

139
140
141
142
143
144
            input_info = [terminate_runs, raw_text_len, context_length]
            input_info_tensor = torch.cuda.LongTensor(input_info)
            torch.distributed.all_reduce(input_info_tensor,
                                         group=mpu.get_model_parallel_group())
            terminate_runs = input_info_tensor[0].item()
            raw_text_len = input_info_tensor[1].item()
145
            context_length = input_info_tensor[2].item()
146
147
148
149

            if terminate_runs == 1:
                return

150
151
            # For pipeline parallel we send context tokens to other stages
            # so they get the lengths correct
152
153
154
155
            if mpu.get_tensor_model_parallel_rank() == 0 \
               and args.pipeline_model_parallel_size > 1:
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_first_rank()
156
                    group = mpu.get_pipeline_model_parallel_group()
157
158
                    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
                    torch.distributed.broadcast(context_tokens_tensor, src, group)
159
                else:
160
                    src = mpu.get_pipeline_model_parallel_first_rank()
161
                    group = mpu.get_pipeline_model_parallel_group()
162
163
164
165
166
167
                    context_tokens_tensor = torch.empty(context_length,
                                                        dtype=torch.int64,
                                                        device=torch.device("cuda"))
                    torch.distributed.broadcast(context_tokens_tensor, src, group)
                    context_tokens = context_tokens_tensor.cpu().numpy().tolist()

168
            token_stream = get_token_stream(model, [context_tokens])
Mohammad's avatar
Mohammad committed
169
            for _, decode_tokens in enumerate(token_stream):
170
                pass
171

172
            if mpu.get_tensor_model_parallel_rank() == 0:
173
174
175
                if mpu.is_pipeline_first_stage():
                    os.system('clear')
                    print("\nContext:", raw_text, flush=True)
176

177
178
                    fname_out.write("\nContext:")
                    fname_out.write(raw_text)
Mohammad's avatar
Mohammad committed
179

180
181
182
183
184
185
186
187
188
                    decode_tokens, _ = decode_tokens
                    decode_tokens = decode_tokens[0].cpu().numpy().tolist()
                    trim_decode_tokens = tokenizer.detokenize(
                        decode_tokens)[raw_text_len:]
                    print("\nMegatron-LM:", trim_decode_tokens, flush=True)

                    fname_out.write("\n\nMegatron-LM:")
                    fname_out.write(trim_decode_tokens)
                    fname_out.write("\n")
189

190
            raw_text = None
191
            context_count += 1
Mohammad's avatar
Mohammad committed
192

Mostofa Patwary's avatar
Mostofa Patwary committed
193
def generate_samples_eval(model, context, max_gen_length, eos_token_id):
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    # Generate samples for lm evaluation
    # NEED TO THINK ABOUT eos token

    args = get_args()
    tokenizer = get_tokenizer()

    raw_text_len = len(context)
    model.eval()

    context_tokens = tokenizer.tokenize(context)
    args.out_seq_length = max_gen_length + len(context_tokens)
    args.eos_id = eos_token_id

    with torch.no_grad():
        token_stream = get_token_stream(model, [context_tokens])
        for counter, decode_tokens in enumerate(token_stream):
            if counter == args.out_seq_length:
                break

Mostofa Patwary's avatar
Mostofa Patwary committed
213
214
215
216
217
    decode_tokens, _ = decode_tokens
    decode_tokens = decode_tokens[0].cpu().numpy().tolist()
    trim_decode_tokens = tokenizer.detokenize(
        decode_tokens)[raw_text_len:]
 
218
219
    return trim_decode_tokens

220

221
def generate_samples_interactive(model, print_frequency=24):
Mohammad's avatar
Mohammad committed
222

223
224
    args = get_args()
    tokenizer = get_tokenizer()
225

Mohammad's avatar
Mohammad committed
226
    context_count = 0
227
228
229
    model.eval()
    with torch.no_grad():
        while True:
Mohammad's avatar
Mohammad committed
230
            terminate_runs = 0
231
            raw_text_len = 0
232

233
234
            if mpu.is_pipeline_first_stage() \
               and mpu.get_tensor_model_parallel_rank() == 0:
235
                os.system('clear')
236
237
238
239
                raw_text = input("\nContext prompt (stop to exit) >>> ")
                while not raw_text:
                    print('Prompt should not be empty!')
                    raw_text = input("\nContext prompt (stop to exit) >>> ")
240
                raw_text_len = len(raw_text)
Mohammad's avatar
Mohammad committed
241

242
243
244
                if "stop" in raw_text:
                    terminate_runs = 1
                else:
245
                    context_tokens = tokenizer.tokenize(raw_text)
246
247
                    context_length = len(context_tokens)

248
                    if context_length >= (args.seq_length // 2):
Neel Kant's avatar
Neel Kant committed
249
250
                        print("\nContext length", context_length,
                              "\nPlease give smaller context (half of the "
251
                              "sequence length)!", flush=True)
252
253
                        continue
            else:
254
                context_tokens = tokenizer.tokenize("EMPTY TEXT")
255
                context_length = 0
Mohammad's avatar
Mohammad committed
256

257
258
259
260
261
262
            input_info = [terminate_runs, raw_text_len, context_length]
            input_info_tensor = torch.cuda.LongTensor(input_info)
            torch.distributed.all_reduce(input_info_tensor,
                                         group=mpu.get_model_parallel_group())
            terminate_runs = input_info_tensor[0].item()
            raw_text_len = input_info_tensor[1].item()
263
            context_length = input_info_tensor[2].item()
264
265
266
267

            if terminate_runs == 1:
                return

268
269
            # For pipeline parallel we send context tokens to other stages
            # so they get the lengths correct
270
271
272
273
            if mpu.get_tensor_model_parallel_rank() == 0 \
               and args.pipeline_model_parallel_size > 1:
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_first_rank()
274
                    group = mpu.get_pipeline_model_parallel_group()
275
276
                    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
                    torch.distributed.broadcast(context_tokens_tensor, src, group)
277
                else:
278
                    src = mpu.get_pipeline_model_parallel_first_rank()
279
                    group = mpu.get_pipeline_model_parallel_group()
280
281
282
283
284
285
                    context_tokens_tensor = torch.empty(context_length,
                                                        dtype=torch.int64,
                                                        device=torch.device("cuda"))
                    torch.distributed.broadcast(context_tokens_tensor, src, group)
                    context_tokens = context_tokens_tensor.cpu().numpy().tolist()

286
            token_stream = get_token_stream(model, [context_tokens])
287

288
            for counter, decode_tokens in enumerate(token_stream):
289
290
291
292
293
294
295
296
                if counter % print_frequency != 0 \
                   or mpu.get_tensor_model_parallel_rank() != 0 \
                   or not mpu.is_pipeline_first_stage():
                    continue

                os.system('clear')
                print("\nContext:", raw_text, flush=True)

297
298
                decode_tokens, _ = decode_tokens
                decode_tokens = decode_tokens[0].cpu().numpy().tolist()
299
300
301
                trim_decode_tokens = tokenizer.detokenize(
                    decode_tokens)[raw_text_len:]
                print("\nMegatron-LM:", trim_decode_tokens, flush=True)
302

303
304
            if mpu.is_pipeline_first_stage() \
               and mpu.get_tensor_model_parallel_rank() == 0:
305
306
                os.system('clear')
                print("\nContext:", raw_text, flush=True)
307
308
309
310

                if not isinstance(decode_tokens, list):
                    decode_tokens, _ = decode_tokens
                    decode_tokens = decode_tokens[0].cpu().numpy().tolist()
311
                trim_decode_tokens = tokenizer.detokenize(
312
                    decode_tokens)[raw_text_len:]
313
314
                print("\nMegatron-LM:", trim_decode_tokens, flush=True)

315
316
                input("\nPress Enter to continue >>>")

317
318
            raw_text = None
            context_count += 1
Mohammad's avatar
Mohammad committed
319

320

321
322

def generate_samples_unconditional(model):
Mohammad's avatar
Mohammad committed
323

324
325
    args = get_args()
    tokenizer = get_tokenizer()
Mohammad's avatar
Mohammad committed
326

327
    num_samples = args.num_samples
328
    context_tokens = [[tokenizer.eod]
329
                      for _ in range(args.micro_batch_size)]
330
331
332
    ctr = 0
    while True:
        start_time = time.time()
333
334
        for token_stream in get_token_stream(model,
                                             copy.deepcopy(context_tokens)):
335
            pass
336
337
338
339
340
341
342
343
344
        if mpu.is_pipeline_last_stage() and \
           mpu.get_tensor_model_parallel_rank() == 0:
            if ctr % args.log_interval == 0:
                print('Avg s/batch:',
                      (time.time() - start_time) / min(args.log_interval, ctr + 1))
                start_time = time.time()
            length = len(token_stream)
            token_batch = token_stream[0].cpu().numpy().tolist()
            length_batch = token_stream[1].cpu().numpy().tolist()
345
            assert len(length_batch) == args.micro_batch_size
346
347
348
349
350
351
352
353
354
355
            for tokens, length in zip(token_batch, length_batch):
                tokens = tokens[1:length - 1]
                text = tokenizer.detokenize(tokens)
                is_finished = length < args.seq_length - 1
                datum = {'text': text, 'length': length - 1, 'finished': is_finished}
                yield datum
                ctr += 1
                if ctr >= num_samples:
                    break
        else:
356
            for _ in range(args.micro_batch_size):
357
358
359
360
                yield None
                ctr += 1
                if ctr >= num_samples:
                    break
361
362
363
        if ctr >= num_samples:
            break

364

Mohammad's avatar
Mohammad committed
365
def generate_and_write_samples_unconditional(model):
Mohammad's avatar
Mohammad committed
366

367
    args = get_args()
368
369
    assert args.genfile is not None
    with open(args.genfile, 'w') as f:
370
        for datum in generate_samples_unconditional(model):
371
372
373
            if mpu.is_pipeline_last_stage() and \
               mpu.get_tensor_model_parallel_rank() == 0:
                f.write(json.dumps(datum) + '\n')
374

375

Mohammad's avatar
Mohammad committed
376
377
def pad_batch(batch, pad_id, args):

378
379
380
381
    context_lengths = []
    for tokens in batch:
        context_length = len(tokens)
        if context_length < args.seq_length:
Neel Kant's avatar
Neel Kant committed
382
            tokens.extend([pad_id] * (args.seq_length - context_length))
383
384
385
        context_lengths.append(context_length)
    return batch, context_lengths

386
387

def get_token_stream(model, context_tokens):
Mohammad's avatar
Mohammad committed
388

389
390
    args = get_args()
    tokenizer = get_tokenizer()
Mohammad's avatar
Mohammad committed
391
392
393

    context_tokens, context_lengths = pad_batch(context_tokens,
                                                tokenizer.eod, args)
394
395
396
397

    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
    context_length_tensor = torch.cuda.LongTensor(context_lengths)

398
    torch.distributed.broadcast(context_length_tensor,
399
400
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
401
    torch.distributed.broadcast(context_tokens_tensor,
402
403
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
404
405

    context_length = context_length_tensor.min().item()
Mohammad's avatar
Mohammad committed
406
    tokens, attention_mask, position_ids = get_batch(context_tokens_tensor)
407

408
409
410
    batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor,
                                                 context_length_tensor,
                                                 attention_mask, position_ids)
411
412
    for tokens, lengths in batch_token_iterator:
        context_length += 1
413
414
415
416
        if tokens is not None:
            yield tokens[:, :context_length], lengths
        else:
            yield None, None
417
418
419


def switch(val1, val2, boolean):
Mohammad's avatar
Mohammad committed
420

421
    boolean = boolean.type_as(val1)
Mohammad's avatar
Mohammad committed
422
    return (1 - boolean) * val1 + boolean * val2
423

424

425
426
427
428
def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids,
                 layer_past=None, get_key_value=None,
                 forward_method_parallel_output=None):

Jared Casper's avatar
Jared Casper committed
429
430
    # Hidden size changes when not using recompute, need to tell p2p_communicate
    # functions the correct size
431
432
433
434
    args = get_args()
    orig_seq_length = args.seq_length
    args.seq_length = tokens.shape[1]

Jared Casper's avatar
Jared Casper committed
435
    input_tensor = recv_forward()
436
437

    # Forward pass through the model.
438
439
440
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    unwrapped_model.set_input_tensor(input_tensor)
Jared Casper's avatar
Jared Casper committed
441
442
443
444
445
    output_tensor = model(tokens, position_ids, attention_mask,
                          tokentype_ids=tokentype_ids,
                          layer_past=layer_past,
                          get_key_value=get_key_value,
                          forward_method_parallel_output=forward_method_parallel_output)
446
447
448
449

    if get_key_value:
        output_tensor, layer_past = output_tensor

Jared Casper's avatar
Jared Casper committed
450
    send_forward(output_tensor)
451

452
    args.seq_length = orig_seq_length
453
454
455
456
457
    if get_key_value:
        return output_tensor, layer_past
    return output_tensor


458
459
460
def sample_sequence_batch(model, context_tokens, context_lengths,
                          attention_mask, position_ids,
                          maxlen=None, type_ids=None):
Mohammad's avatar
Mohammad committed
461

462
463
    args = get_args()
    tokenizer = get_tokenizer()
Mohammad's avatar
Mohammad committed
464

465
466
467
    model.eval()
    with torch.no_grad():
        context_length = context_lengths.min().item()
468

Mostofa Patwary's avatar
Mostofa Patwary committed
469
470
        # added eos_id to support the function generate_samples_eval that passes
        # eos_id as an argument and needs termination when that id id found.
471
472
473
474
        if hasattr(args, 'eos_id'):
            eos_id = args.eos_id
        else:
            eos_id = tokenizer.eod
475
476
477
478
479
480
481
482
483
484
485
486
487

        counter = 0
        org_context_length = context_length

        layer_past = None
        batch_size = context_tokens.size(0)
        is_done = torch.zeros([batch_size]).byte().cuda()
        tokens = context_tokens
        if maxlen is None:
            maxlen = args.seq_length - 1
            if maxlen > (org_context_length + args.out_seq_length):
                maxlen = org_context_length + args.out_seq_length

Neel Kant's avatar
Neel Kant committed
488
        lengths = torch.ones([batch_size]).long().cuda() * maxlen
Mohammad's avatar
Mohammad committed
489

490
491
        while context_length <= (maxlen):
            if args.recompute:
492
493
494
495
496
497
498
499
                output = forward_step(model, tokens,
                                      position_ids,
                                      attention_mask,
                                      tokentype_ids=type_ids,
                                      forward_method_parallel_output=False)
                if mpu.is_pipeline_last_stage():
                    assert output is not None
                    logits = output[:, context_length - 1, :]
500
            else:
501
                types2use = None
502
503
504
                if counter == 0:
                    tokens2use = tokens[:, :context_length]
                    positions2use = position_ids[:, :context_length]
505
506
                    if type_ids is not None:
                        types2use = type_ids[:, :context_length]
507
                else:
508
509
510
511
                    tokens2use = tokens[:, context_length - 1].view(
                        batch_size, -1)
                    positions2use = position_ids[:, context_length - 1].view(
                        batch_size, -1)
512
                    if type_ids is not None:
513
514
                        types2use = type_ids[:, context_length - 1].view(
                            batch_size, -1)
515
                output, layer_past = forward_step(model, tokens2use,
516
517
518
519
520
521
522
523
                                                  positions2use,
                                                  attention_mask,
                                                  layer_past=layer_past,
                                                  get_key_value=True,
                                                  tokentype_ids=types2use,
                                                  forward_method_parallel_output=False)
                if mpu.is_pipeline_last_stage():
                    assert output is not None
524
                    logits = output[:, -1].view(batch_size, -1).contiguous()
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

            if mpu.is_pipeline_last_stage():
                if args.greedy:
                    prev = torch.argmax(logits, dim=-1).view(-1)
                else:
                    logits = logits.float()
                    logits /= args.temperature
                    logits = top_k_logits(logits, top_k=args.top_k,
                                          top_p=args.top_p)
                    log_probs = F.softmax(logits, dim=-1)
                    prev = torch.multinomial(log_probs, num_samples=1).view(-1)

                started = context_lengths <= context_length

                new_tokens = switch(
                    tokens[:, context_length].view(-1), prev, started)
                tokens[:, context_length] = new_tokens
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
                torch.distributed.broadcast(new_tokens, src, group)

                done_token = (prev == eos_id).byte() & started.byte()
                just_finished = (done_token & ~is_done).bool()
                lengths[just_finished.view(-1)] = context_length
                is_done = is_done | done_token

                done = torch.all(is_done)
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
                yield tokens, lengths

557
            else:
558
559
560
561
562
563
564
565
566
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_last_rank()
                    group = mpu.get_embedding_group()
                    new_tokens = torch.empty_like(tokens[:, context_length])
                    torch.distributed.broadcast(new_tokens, src, group)
                    tokens[:, context_length] = new_tokens
                    yield tokens, None
                else:
                    yield None, None
567

568
569
570
571
                done = torch.cuda.ByteTensor([0])
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
572

573
574
            context_length += 1
            counter += 1
575
576
            if done:
                break