text_generation_utils.py 22.7 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Utilities for generating text."""
17

18
import copy
Mohammad's avatar
Mohammad committed
19
20
21
22
import json
import os
import time

23
24
25
import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
26
27
28
from megatron import get_args
from megatron import get_tokenizer
from megatron import mpu
29
from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model
Jared Casper's avatar
Jared Casper committed
30
from megatron.p2p_communication import recv_forward, send_forward
31

32
33
34
35
36
# These are needed to unwrap the model, would be nice to put these in megatron.utils if possible?
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module

37
38
39
40
def get_batch(context_tokens):
    """Generate batch from context tokens."""
    args = get_args()
    tokenizer = get_tokenizer()
41

42
    # Move to GPU.
43
    tokens = context_tokens.view(args.micro_batch_size, -1).contiguous().cuda()
44
45
    # Get the attention mask and postition ids.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
46
        tokens,
47
        tokenizer.eod,
48
        args.reset_position_ids,
49
        args.reset_attention_mask,
50
        args.eod_mask_loss)
51

52
53
    return tokens, attention_mask, position_ids

54

55
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
56
57
58
59
    """ This function has been mostly taken from huggingface conversational
     ai code at
         https://medium.com/huggingface/how-to-build-a-state-of-the-art-
              conversational-ai-with-transfer-learning-2d818ac26313 """
60
61

    if top_k > 0:
62
63
        # Remove all tokens with a probability less than the
        # last token of the top-k
64
65
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
66

67
    if top_p > 0.0:
68
69
70
71
72
        # Cconvert to 1D
        sorted_logits, sorted_indices = torch.sort(
            logits, descending=True, dim=-1)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1),
                                        dim=-1)
73
74
75

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
76
77
78
79
        # Shift the indices to the right to keep also the first token
        # above the threshold
        sorted_indices_to_remove[..., 1:] \
            = sorted_indices_to_remove[..., :-1].clone()
80
        sorted_indices_to_remove[..., 0] = 0
81
82
83
        for i in range(sorted_indices.size(0)):
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
            logits[i][indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
84

85
86
87
    return logits


88
def generate_samples_input_from_file(model):
Mohammad's avatar
Mohammad committed
89

90
91
    args = get_args()
    tokenizer = get_tokenizer()
92

93
94
95
    # Read the sample file and open the output file.
    assert args.sample_input_file is not None, \
        'sample input file is not provided.'
96
    if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0:
97
98
99
100
        fname = open(args.sample_input_file, "r")
        all_raw_text = fname.readlines()
        input_count = len(all_raw_text)
        input_pos = 0
101
102
        if args.sample_output_file is None:
            sample_output_file = args.sample_input_file + ".out"
103
            print('`sample-output-file` not specified, setting '
Mohammad's avatar
Mohammad committed
104
                  'it to {}'.format(sample_output_file))
Mostofa Patwary's avatar
Mostofa Patwary committed
105
106
        else:
            sample_output_file = args.sample_output_file
107
        fname_out = open(sample_output_file, "w+")
108

Mohammad's avatar
Mohammad committed
109
    context_count = 0
110
111
112
    model.eval()
    with torch.no_grad():
        while True:
Mohammad's avatar
Mohammad committed
113
            terminate_runs = 0
114
            raw_text_len = 0
115

116
117
            if mpu.is_pipeline_first_stage() \
               and mpu.get_tensor_model_parallel_rank() == 0:
118
119
120
121
                raw_text = all_raw_text[input_pos]
                input_pos += 1
                if input_pos == input_count:
                    raw_text = "stop"
122
                raw_text_len = len(raw_text)
123
124
125
126

                if "stop" in raw_text:
                    terminate_runs = 1
                else:
127
                    context_tokens = tokenizer.tokenize(raw_text)
128
129
                    context_length = len(context_tokens)

130
                    if context_length >= (args.seq_length // 2):
Neel Kant's avatar
Neel Kant committed
131
132
                        print("\nContext length", context_length,
                              "\nPlease give smaller context (half of the "
133
                              "sequence length)!", flush=True)
134
135
                        continue
            else:
136
                context_tokens = tokenizer.tokenize("EMPTY TEXT")
137
                context_length = 0
Mohammad's avatar
Mohammad committed
138

139
140
141
142
143
144
            input_info = [terminate_runs, raw_text_len, context_length]
            input_info_tensor = torch.cuda.LongTensor(input_info)
            torch.distributed.all_reduce(input_info_tensor,
                                         group=mpu.get_model_parallel_group())
            terminate_runs = input_info_tensor[0].item()
            raw_text_len = input_info_tensor[1].item()
145
            context_length = input_info_tensor[2].item()
146
147
148
149

            if terminate_runs == 1:
                return

150
151
            # For pipeline parallel we send context tokens to other stages
            # so they get the lengths correct
152
153
154
155
            if mpu.get_tensor_model_parallel_rank() == 0 \
               and args.pipeline_model_parallel_size > 1:
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_first_rank()
156
                    group = mpu.get_pipeline_model_parallel_group()
157
158
                    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
                    torch.distributed.broadcast(context_tokens_tensor, src, group)
159
                else:
160
                    src = mpu.get_pipeline_model_parallel_first_rank()
161
                    group = mpu.get_pipeline_model_parallel_group()
162
163
164
165
166
167
                    context_tokens_tensor = torch.empty(context_length,
                                                        dtype=torch.int64,
                                                        device=torch.device("cuda"))
                    torch.distributed.broadcast(context_tokens_tensor, src, group)
                    context_tokens = context_tokens_tensor.cpu().numpy().tolist()

168
            token_stream = get_token_stream(model, [context_tokens])
Mohammad's avatar
Mohammad committed
169
            for _, decode_tokens in enumerate(token_stream):
170
                pass
171

172
            if mpu.get_tensor_model_parallel_rank() == 0:
173
174
175
                if mpu.is_pipeline_first_stage():
                    os.system('clear')
                    print("\nContext:", raw_text, flush=True)
176

177
178
                    fname_out.write("\nContext:")
                    fname_out.write(raw_text)
Mohammad's avatar
Mohammad committed
179

180
181
182
183
184
185
186
187
188
                    decode_tokens, _ = decode_tokens
                    decode_tokens = decode_tokens[0].cpu().numpy().tolist()
                    trim_decode_tokens = tokenizer.detokenize(
                        decode_tokens)[raw_text_len:]
                    print("\nMegatron-LM:", trim_decode_tokens, flush=True)

                    fname_out.write("\n\nMegatron-LM:")
                    fname_out.write(trim_decode_tokens)
                    fname_out.write("\n")
189

190
            raw_text = None
191
            context_count += 1
Mohammad's avatar
Mohammad committed
192

Mostofa Patwary's avatar
Mostofa Patwary committed
193
def generate_samples_eval(model, context, max_gen_length, eos_token_id):
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    # Generate samples for lm evaluation
    # NEED TO THINK ABOUT eos token

    args = get_args()
    tokenizer = get_tokenizer()

    raw_text_len = len(context)
    model.eval()

    context_tokens = tokenizer.tokenize(context)
    args.out_seq_length = max_gen_length + len(context_tokens)
    args.eos_id = eos_token_id

    with torch.no_grad():
        token_stream = get_token_stream(model, [context_tokens])
        for counter, decode_tokens in enumerate(token_stream):
            decode_tokens, _ = decode_tokens
            decode_tokens = decode_tokens[0].cpu().numpy().tolist()
            trim_decode_tokens = tokenizer.detokenize(
                decode_tokens)[raw_text_len:]
            if counter == args.out_seq_length:
                break

    return trim_decode_tokens

219

220
def generate_samples_interactive(model, print_frequency=24):
Mohammad's avatar
Mohammad committed
221

222
223
    args = get_args()
    tokenizer = get_tokenizer()
224

Mohammad's avatar
Mohammad committed
225
    context_count = 0
226
227
228
    model.eval()
    with torch.no_grad():
        while True:
Mohammad's avatar
Mohammad committed
229
            terminate_runs = 0
230
            raw_text_len = 0
231

232
233
            if mpu.is_pipeline_first_stage() \
               and mpu.get_tensor_model_parallel_rank() == 0:
234
                os.system('clear')
235
236
237
238
                raw_text = input("\nContext prompt (stop to exit) >>> ")
                while not raw_text:
                    print('Prompt should not be empty!')
                    raw_text = input("\nContext prompt (stop to exit) >>> ")
239
                raw_text_len = len(raw_text)
Mohammad's avatar
Mohammad committed
240

241
242
243
                if "stop" in raw_text:
                    terminate_runs = 1
                else:
244
                    context_tokens = tokenizer.tokenize(raw_text)
245
246
                    context_length = len(context_tokens)

247
                    if context_length >= (args.seq_length // 2):
Neel Kant's avatar
Neel Kant committed
248
249
                        print("\nContext length", context_length,
                              "\nPlease give smaller context (half of the "
250
                              "sequence length)!", flush=True)
251
252
                        continue
            else:
253
                context_tokens = tokenizer.tokenize("EMPTY TEXT")
254
                context_length = 0
Mohammad's avatar
Mohammad committed
255

256
257
258
259
260
261
            input_info = [terminate_runs, raw_text_len, context_length]
            input_info_tensor = torch.cuda.LongTensor(input_info)
            torch.distributed.all_reduce(input_info_tensor,
                                         group=mpu.get_model_parallel_group())
            terminate_runs = input_info_tensor[0].item()
            raw_text_len = input_info_tensor[1].item()
262
            context_length = input_info_tensor[2].item()
263
264
265
266

            if terminate_runs == 1:
                return

267
268
            # For pipeline parallel we send context tokens to other stages
            # so they get the lengths correct
269
270
271
272
            if mpu.get_tensor_model_parallel_rank() == 0 \
               and args.pipeline_model_parallel_size > 1:
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_first_rank()
273
                    group = mpu.get_pipeline_model_parallel_group()
274
275
                    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
                    torch.distributed.broadcast(context_tokens_tensor, src, group)
276
                else:
277
                    src = mpu.get_pipeline_model_parallel_first_rank()
278
                    group = mpu.get_pipeline_model_parallel_group()
279
280
281
282
283
284
                    context_tokens_tensor = torch.empty(context_length,
                                                        dtype=torch.int64,
                                                        device=torch.device("cuda"))
                    torch.distributed.broadcast(context_tokens_tensor, src, group)
                    context_tokens = context_tokens_tensor.cpu().numpy().tolist()

285
            token_stream = get_token_stream(model, [context_tokens])
286

287
            for counter, decode_tokens in enumerate(token_stream):
288
289
290
291
292
293
294
295
                if counter % print_frequency != 0 \
                   or mpu.get_tensor_model_parallel_rank() != 0 \
                   or not mpu.is_pipeline_first_stage():
                    continue

                os.system('clear')
                print("\nContext:", raw_text, flush=True)

296
297
                decode_tokens, _ = decode_tokens
                decode_tokens = decode_tokens[0].cpu().numpy().tolist()
298
299
300
                trim_decode_tokens = tokenizer.detokenize(
                    decode_tokens)[raw_text_len:]
                print("\nMegatron-LM:", trim_decode_tokens, flush=True)
301

302
303
            if mpu.is_pipeline_first_stage() \
               and mpu.get_tensor_model_parallel_rank() == 0:
304
305
                os.system('clear')
                print("\nContext:", raw_text, flush=True)
306
307
308
309

                if not isinstance(decode_tokens, list):
                    decode_tokens, _ = decode_tokens
                    decode_tokens = decode_tokens[0].cpu().numpy().tolist()
310
                trim_decode_tokens = tokenizer.detokenize(
311
                    decode_tokens)[raw_text_len:]
312
313
                print("\nMegatron-LM:", trim_decode_tokens, flush=True)

314
315
                input("\nPress Enter to continue >>>")

316
317
            raw_text = None
            context_count += 1
Mohammad's avatar
Mohammad committed
318

319

320
321

def generate_samples_unconditional(model):
Mohammad's avatar
Mohammad committed
322

323
324
    args = get_args()
    tokenizer = get_tokenizer()
Mohammad's avatar
Mohammad committed
325

326
    num_samples = args.num_samples
327
    context_tokens = [[tokenizer.eod]
328
                      for _ in range(args.micro_batch_size)]
329
330
331
    ctr = 0
    while True:
        start_time = time.time()
332
333
        for token_stream in get_token_stream(model,
                                             copy.deepcopy(context_tokens)):
334
            pass
335
336
337
338
339
340
341
342
343
        if mpu.is_pipeline_last_stage() and \
           mpu.get_tensor_model_parallel_rank() == 0:
            if ctr % args.log_interval == 0:
                print('Avg s/batch:',
                      (time.time() - start_time) / min(args.log_interval, ctr + 1))
                start_time = time.time()
            length = len(token_stream)
            token_batch = token_stream[0].cpu().numpy().tolist()
            length_batch = token_stream[1].cpu().numpy().tolist()
344
            assert len(length_batch) == args.micro_batch_size
345
346
347
348
349
350
351
352
353
354
            for tokens, length in zip(token_batch, length_batch):
                tokens = tokens[1:length - 1]
                text = tokenizer.detokenize(tokens)
                is_finished = length < args.seq_length - 1
                datum = {'text': text, 'length': length - 1, 'finished': is_finished}
                yield datum
                ctr += 1
                if ctr >= num_samples:
                    break
        else:
355
            for _ in range(args.micro_batch_size):
356
357
358
359
                yield None
                ctr += 1
                if ctr >= num_samples:
                    break
360
361
362
        if ctr >= num_samples:
            break

363

Mohammad's avatar
Mohammad committed
364
def generate_and_write_samples_unconditional(model):
Mohammad's avatar
Mohammad committed
365

366
    args = get_args()
367
368
    assert args.genfile is not None
    with open(args.genfile, 'w') as f:
369
        for datum in generate_samples_unconditional(model):
370
371
372
            if mpu.is_pipeline_last_stage() and \
               mpu.get_tensor_model_parallel_rank() == 0:
                f.write(json.dumps(datum) + '\n')
373

374

Mohammad's avatar
Mohammad committed
375
376
def pad_batch(batch, pad_id, args):

377
378
379
380
    context_lengths = []
    for tokens in batch:
        context_length = len(tokens)
        if context_length < args.seq_length:
Neel Kant's avatar
Neel Kant committed
381
            tokens.extend([pad_id] * (args.seq_length - context_length))
382
383
384
        context_lengths.append(context_length)
    return batch, context_lengths

385
386

def get_token_stream(model, context_tokens):
Mohammad's avatar
Mohammad committed
387

388
389
    args = get_args()
    tokenizer = get_tokenizer()
Mohammad's avatar
Mohammad committed
390
391
392

    context_tokens, context_lengths = pad_batch(context_tokens,
                                                tokenizer.eod, args)
393
394
395
396

    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
    context_length_tensor = torch.cuda.LongTensor(context_lengths)

397
    torch.distributed.broadcast(context_length_tensor,
398
399
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
400
    torch.distributed.broadcast(context_tokens_tensor,
401
402
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
403
404

    context_length = context_length_tensor.min().item()
Mohammad's avatar
Mohammad committed
405
    tokens, attention_mask, position_ids = get_batch(context_tokens_tensor)
406

407
408
409
    batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor,
                                                 context_length_tensor,
                                                 attention_mask, position_ids)
410
411
    for tokens, lengths in batch_token_iterator:
        context_length += 1
412
413
414
415
        if tokens is not None:
            yield tokens[:, :context_length], lengths
        else:
            yield None, None
416
417
418


def switch(val1, val2, boolean):
Mohammad's avatar
Mohammad committed
419

420
    boolean = boolean.type_as(val1)
Mohammad's avatar
Mohammad committed
421
    return (1 - boolean) * val1 + boolean * val2
422

423

424
425
426
427
def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids,
                 layer_past=None, get_key_value=None,
                 forward_method_parallel_output=None):

Jared Casper's avatar
Jared Casper committed
428
429
    # Hidden size changes when not using recompute, need to tell p2p_communicate
    # functions the correct size
430
431
432
433
    args = get_args()
    orig_seq_length = args.seq_length
    args.seq_length = tokens.shape[1]

Jared Casper's avatar
Jared Casper committed
434
    input_tensor = recv_forward()
435
436

    # Forward pass through the model.
437
438
439
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    unwrapped_model.set_input_tensor(input_tensor)
Jared Casper's avatar
Jared Casper committed
440
441
442
443
444
    output_tensor = model(tokens, position_ids, attention_mask,
                          tokentype_ids=tokentype_ids,
                          layer_past=layer_past,
                          get_key_value=get_key_value,
                          forward_method_parallel_output=forward_method_parallel_output)
445
446
447
448

    if get_key_value:
        output_tensor, layer_past = output_tensor

Jared Casper's avatar
Jared Casper committed
449
    send_forward(output_tensor)
450

451
    args.seq_length = orig_seq_length
452
453
454
455
456
    if get_key_value:
        return output_tensor, layer_past
    return output_tensor


457
458
459
def sample_sequence_batch(model, context_tokens, context_lengths,
                          attention_mask, position_ids,
                          maxlen=None, type_ids=None):
Mohammad's avatar
Mohammad committed
460

461
462
    args = get_args()
    tokenizer = get_tokenizer()
Mohammad's avatar
Mohammad committed
463

464
465
466
    model.eval()
    with torch.no_grad():
        context_length = context_lengths.min().item()
467
468
469
470
471

        if hasattr(args, 'eos_id'):
            eos_id = args.eos_id
        else:
            eos_id = tokenizer.eod
472
473
474
475
476
477
478
479
480
481
482
483
484

        counter = 0
        org_context_length = context_length

        layer_past = None
        batch_size = context_tokens.size(0)
        is_done = torch.zeros([batch_size]).byte().cuda()
        tokens = context_tokens
        if maxlen is None:
            maxlen = args.seq_length - 1
            if maxlen > (org_context_length + args.out_seq_length):
                maxlen = org_context_length + args.out_seq_length

Neel Kant's avatar
Neel Kant committed
485
        lengths = torch.ones([batch_size]).long().cuda() * maxlen
Mohammad's avatar
Mohammad committed
486

487
488
        while context_length <= (maxlen):
            if args.recompute:
489
490
491
492
493
494
495
496
                output = forward_step(model, tokens,
                                      position_ids,
                                      attention_mask,
                                      tokentype_ids=type_ids,
                                      forward_method_parallel_output=False)
                if mpu.is_pipeline_last_stage():
                    assert output is not None
                    logits = output[:, context_length - 1, :]
497
            else:
498
                types2use = None
499
500
501
                if counter == 0:
                    tokens2use = tokens[:, :context_length]
                    positions2use = position_ids[:, :context_length]
502
503
                    if type_ids is not None:
                        types2use = type_ids[:, :context_length]
504
                else:
505
506
507
508
                    tokens2use = tokens[:, context_length - 1].view(
                        batch_size, -1)
                    positions2use = position_ids[:, context_length - 1].view(
                        batch_size, -1)
509
                    if type_ids is not None:
510
511
                        types2use = type_ids[:, context_length - 1].view(
                            batch_size, -1)
512
                output, layer_past = forward_step(model, tokens2use,
513
514
515
516
517
518
519
520
                                                  positions2use,
                                                  attention_mask,
                                                  layer_past=layer_past,
                                                  get_key_value=True,
                                                  tokentype_ids=types2use,
                                                  forward_method_parallel_output=False)
                if mpu.is_pipeline_last_stage():
                    assert output is not None
521
                    logits = output[:, -1].view(batch_size, -1).contiguous()
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

            if mpu.is_pipeline_last_stage():
                if args.greedy:
                    prev = torch.argmax(logits, dim=-1).view(-1)
                else:
                    logits = logits.float()
                    logits /= args.temperature
                    logits = top_k_logits(logits, top_k=args.top_k,
                                          top_p=args.top_p)
                    log_probs = F.softmax(logits, dim=-1)
                    prev = torch.multinomial(log_probs, num_samples=1).view(-1)

                started = context_lengths <= context_length

                new_tokens = switch(
                    tokens[:, context_length].view(-1), prev, started)
                tokens[:, context_length] = new_tokens
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
                torch.distributed.broadcast(new_tokens, src, group)

                done_token = (prev == eos_id).byte() & started.byte()
                just_finished = (done_token & ~is_done).bool()
                lengths[just_finished.view(-1)] = context_length
                is_done = is_done | done_token

                done = torch.all(is_done)
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
                yield tokens, lengths

554
            else:
555
556
557
558
559
560
561
562
563
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_last_rank()
                    group = mpu.get_embedding_group()
                    new_tokens = torch.empty_like(tokens[:, context_length])
                    torch.distributed.broadcast(new_tokens, src, group)
                    tokens[:, context_length] = new_tokens
                    yield tokens, None
                else:
                    yield None, None
564

565
566
567
568
                done = torch.cuda.ByteTensor([0])
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
569

570
571
            context_length += 1
            counter += 1
572
573
            if done:
                break