bert_model.py 18.1 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

18
19
import pickle

Neel Kant's avatar
Neel Kant committed
20
import numpy as np
21
import torch
22
import torch.nn.functional as F
23

Mohammad's avatar
Mohammad committed
24
from megatron import get_args
25
26
27
28
29
30
31
from megatron.model.language_model import parallel_lm_logits
from megatron.model.language_model import get_language_model
from megatron.model.transformer import LayerNorm
from megatron.model.utils import openai_gelu
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from megatron.module import MegatronModule


def bert_attention_mask_func(attention_scores, attention_mask):
    attention_scores = attention_scores + attention_mask
    return attention_scores


def bert_extended_attention_mask(attention_mask, dtype):
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)
    # Since attention_mask is 1.0 for positions we want to attend and 0.0
    # for masked positions, this operation will create a tensor which is
    # 0.0 for positions we want to attend and -10000.0 for masked positions.
    # Since we are adding it to the raw scores before the softmax, this is
    # effectively the same as removing these entirely.
    # fp16 compatibility
    extended_attention_mask = extended_attention_mask.to(dtype=dtype)
    extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

    return extended_attention_mask


def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids


class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
80
        parallel_output: whether output logits being distributed or not.
81
    """
Neel Kant's avatar
Neel Kant committed
82

83
84
85
86
87
    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

88
89
        args = get_args()
        
90
91
        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
        self.bias.model_parallel = True
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
92
93
        self.bias.partition_dim = 0
        self.bias.stride = 1
94
95
96
97
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
        self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
98
99
100
        self.gelu = torch.nn.functional.gelu
        if args.openai_gelu:
            self.gelu = openai_gelu
101
102
103

    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
104
        hidden_states = self.gelu(hidden_states)
105
106
107
108
109
110
111
112
113
114
115
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output


class BertModel(MegatronModule):
    """Bert Language model."""

Mohammad's avatar
Mohammad committed
116
    def __init__(self, num_tokentypes=2, add_binary_head=True,
Neel Kant's avatar
Neel Kant committed
117
                 ict_head_size=None, parallel_output=True):
118
        super(BertModel, self).__init__()
Mohammad's avatar
Mohammad committed
119
        args = get_args()
120
121

        self.add_binary_head = add_binary_head
122
123
124
125
        self.ict_head_size = ict_head_size
        self.add_ict_head = ict_head_size is not None
        assert not (self.add_binary_head and self.add_ict_head)

126
        self.parallel_output = parallel_output
Mohammad's avatar
Mohammad committed
127
        init_method = init_method_normal(args.init_method_std)
128
        add_pooler = self.add_binary_head or self.add_ict_head
Mohammad's avatar
Mohammad committed
129
130
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
Neel Kant's avatar
Neel Kant committed
131
132
133
134
135

        max_pos_embeds = None
        if not add_binary_head and ict_head_size is None:
            max_pos_embeds = 2 * args.seq_length

136
        self.language_model, self._language_model_key = get_language_model(
Mohammad's avatar
Mohammad committed
137
            attention_mask_func=bert_attention_mask_func,
138
            num_tokentypes=num_tokentypes,
139
            add_pooler=add_pooler,
140
            init_method=init_method,
Neel Kant's avatar
Neel Kant committed
141
142
            scaled_init_method=scaled_init_method,
            max_pos_embeds=max_pos_embeds)
143

Neel Kant's avatar
Neel Kant committed
144
145
146
        if not self.add_ict_head:
            self.lm_head = BertLMHead(
                self.language_model.embedding.word_embeddings.weight.size(0),
Neel Kant's avatar
Neel Kant committed
147
                args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
Neel Kant's avatar
Neel Kant committed
148
            self._lm_head_key = 'lm_head'
149
        if self.add_binary_head:
Mohammad's avatar
Mohammad committed
150
151
            self.binary_head = get_linear_layer(args.hidden_size, 2,
                                                init_method)
152
            self._binary_head_key = 'binary_head'
153
        elif self.add_ict_head:
Neel Kant's avatar
Neel Kant committed
154
            self.ict_head = get_linear_layer(args.hidden_size, ict_head_size, init_method)
155
            self._ict_head_key = 'ict_head'
156

157
    def forward(self, input_ids, attention_mask, tokentype_ids=None):
158
159
160
161
162

        extended_attention_mask = bert_extended_attention_mask(
            attention_mask, next(self.language_model.parameters()).dtype)
        position_ids = bert_position_ids(input_ids)

163
        if self.add_binary_head or self.add_ict_head:
164
165
166
167
168
169
170
171
172
173
174
175
176
            lm_output, pooled_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)
        else:
            lm_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)

        # Output.
Neel Kant's avatar
Neel Kant committed
177
178
179
180
        if self.add_ict_head:
            ict_logits = self.ict_head(pooled_output)
            return ict_logits, None

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        lm_logits = self.lm_head(
            lm_output, self.language_model.embedding.word_embeddings.weight)
        if self.add_binary_head:
            binary_logits = self.binary_head(pooled_output)
            return lm_logits, binary_logits

        return lm_logits, None

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
198
199
200
201
        if not self.add_ict_head:
            state_dict_[self._lm_head_key] \
                = self.lm_head.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
202
203
204
        if self.add_binary_head:
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
205
206
207
        elif self.add_ict_head:
            state_dict_[self._ict_head_key] \
                = self.ict_head.state_dict(destination, prefix, keep_vars)
208
209
210
211
212
213
214
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
215
216
217
        if not self.add_ict_head:
            self.lm_head.load_state_dict(
                state_dict[self._lm_head_key], strict=strict)
218
        if self.add_binary_head:
Neel Kant's avatar
Neel Kant committed
219
220
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)
221
        elif self.add_ict_head:
Neel Kant's avatar
Neel Kant committed
222
223
            self.ict_head.load_state_dict(
                state_dict[self._ict_head_key], strict=strict)
224

225

Neel Kant's avatar
Neel Kant committed
226
class REALMBertModel(MegatronModule):
227
    def __init__(self, retriever):
Neel Kant's avatar
Neel Kant committed
228
229
        super(REALMBertModel, self).__init__()
        bert_args = dict(
Neel Kant's avatar
Neel Kant committed
230
            num_tokentypes=1,
Neel Kant's avatar
Neel Kant committed
231
232
233
234
235
236
            add_binary_head=False,
            parallel_output=True
        )
        self.lm_model = BertModel(**bert_args)
        self._lm_key = 'realm_lm'

237
238
239
240
241
242
        self.retriever = retriever
        self._retriever_key = 'retriever'

    def forward(self, tokens, attention_mask):
        # [batch_size x 5 x seq_length]
        top5_block_tokens, top5_block_attention_mask = self.retriever.retrieve_evidence_blocks(tokens, attention_mask)
Neel Kant's avatar
Neel Kant committed
243
244
245
246
247
248
249
        batch_size = tokens.shape[0]

        seq_length = top5_block_tokens.shape[2]
        top5_block_tokens = torch.cuda.LongTensor(top5_block_tokens).reshape(-1, seq_length)
        top5_block_attention_mask = torch.cuda.LongTensor(top5_block_attention_mask).reshape(-1, seq_length)

        # [batch_size x 5 x embed_size]
Neel Kant's avatar
Neel Kant committed
250
251
        fresh_block_logits = self.retriever.ict_model(None, None, top5_block_tokens, top5_block_attention_mask, only_block=True).reshape(batch_size, 5, -1)
        # fresh_block_logits.register_hook(lambda x: print("fresh block: ", x.shape, flush=True))
Neel Kant's avatar
Neel Kant committed
252
253

        # [batch_size x embed_size x 1]
Neel Kant's avatar
Neel Kant committed
254
        query_logits = self.retriever.ict_model(tokens, attention_mask, None, None, only_query=True).unsqueeze(2)
Neel Kant's avatar
Neel Kant committed
255

256
257

        # [batch_size x 5]
Neel Kant's avatar
Neel Kant committed
258
259
        fresh_block_scores = torch.matmul(fresh_block_logits, query_logits).squeeze()
        block_probs = F.softmax(fresh_block_scores, dim=1)
260

Neel Kant's avatar
Neel Kant committed
261
262
263
        # [batch_size * 5 x seq_length]
        tokens = torch.stack([tokens.unsqueeze(1)] * 5, dim=1).reshape(-1, seq_length)
        attention_mask = torch.stack([attention_mask.unsqueeze(1)] * 5, dim=1).reshape(-1, seq_length)
264

Neel Kant's avatar
Neel Kant committed
265
266
267
        # [batch_size * 5 x 2 * seq_length]
        all_tokens = torch.cat((tokens, top5_block_tokens), axis=1)
        all_attention_mask = torch.cat((attention_mask, top5_block_attention_mask), axis=1)
268
269
270
271
        all_token_types = torch.zeros(all_tokens.shape).type(torch.int64).cuda()

        # [batch_size x 5 x 2 * seq_length x vocab_size]
        lm_logits, _ = self.lm_model.forward(all_tokens, all_attention_mask, all_token_types)
Neel Kant's avatar
Neel Kant committed
272
        lm_logits = lm_logits.reshape(batch_size, 5, 2 * seq_length, -1)
273
274
275
276
277
278
279
280
281
282
        return lm_logits, block_probs

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._lm_key] = self.lm_model.state_dict_for_save_checkpoint(destination, prefix, keep_vars)
        return state_dict_
Neel Kant's avatar
Neel Kant committed
283
284
285


class REALMRetriever(MegatronModule):
Neel Kant's avatar
Neel Kant committed
286
    """Retriever which uses a pretrained ICTBertModel and a HashedIndex"""
Neel Kant's avatar
Neel Kant committed
287
    def __init__(self, ict_model, ict_dataset, block_data, hashed_index, top_k=5):
Neel Kant's avatar
Neel Kant committed
288
289
290
        super(REALMRetriever, self).__init__()
        self.ict_model = ict_model
        self.ict_dataset = ict_dataset
Neel Kant's avatar
Neel Kant committed
291
        self.block_data = block_data
Neel Kant's avatar
Neel Kant committed
292
        self.hashed_index = hashed_index
Neel Kant's avatar
Neel Kant committed
293
        self.top_k = top_k
Neel Kant's avatar
Neel Kant committed
294
295
296
297
298
299
300
301
302

    def retrieve_evidence_blocks_text(self, query_text):
        """Get the top k evidence blocks for query_text in text form"""
        print("-" * 100)
        print("Query: ", query_text)
        padless_max_len = self.ict_dataset.max_seq_length - 2
        query_tokens = self.ict_dataset.encode_text(query_text)[:padless_max_len]

        query_tokens, query_pad_mask = self.ict_dataset.concat_and_pad_tokens(query_tokens)
Neel Kant's avatar
Neel Kant committed
303
304
        query_tokens = torch.cuda.LongTensor(np.array(query_tokens).reshape(1, -1))
        query_pad_mask = torch.cuda.LongTensor(np.array(query_pad_mask).reshape(1, -1))
Neel Kant's avatar
Neel Kant committed
305

306
        top5_block_tokens, _ = self.retrieve_evidence_blocks(query_tokens, query_pad_mask)
Neel Kant's avatar
Neel Kant committed
307
        for i, block in enumerate(top5_block_tokens[0]):
308
            block_text = self.ict_dataset.decode_tokens(block)
Neel Kant's avatar
Neel Kant committed
309
            print('\n    > Block {}: {}'.format(i, block_text))
Neel Kant's avatar
Neel Kant committed
310

311
    def retrieve_evidence_blocks(self, query_tokens, query_pad_mask):
Neel Kant's avatar
Neel Kant committed
312
313
        """Embed blocks to be used in a forward pass"""
        query_embeds = self.ict_model(query_tokens, query_pad_mask, None, None, only_query=True)
314
        query_hashes = self.hashed_index.hash_embeds(query_embeds)
Neel Kant's avatar
Neel Kant committed
315

316
        block_buckets = [self.hashed_index.get_block_bucket(hash) for hash in query_hashes]
Neel Kant's avatar
Neel Kant committed
317
318
319
320
321
322
323
        for j, bucket in enumerate(block_buckets):
            if len(bucket) < 5:
                for i in range(len(block_buckets)):
                    if len(block_buckets[i]) > 5:
                        block_buckets[j] = block_buckets[i].copy()

        # [batch_size x max_bucket_population x embed_size]
Neel Kant's avatar
Neel Kant committed
324
325
        block_embeds = [torch.cuda.FloatTensor(np.array([self.block_data.embed_data[idx]
                                                         for idx in bucket])) for bucket in block_buckets]
Neel Kant's avatar
Neel Kant committed
326

327
328
        all_top5_tokens, all_top5_pad_masks = [], []
        for query_embed, embed_tensor, bucket in zip(query_embeds, block_embeds, block_buckets):
Neel Kant's avatar
Neel Kant committed
329
330
            retrieval_scores = query_embed.matmul(torch.transpose(embed_tensor.reshape(-1, query_embed.size()[0]), 0, 1))
            print(retrieval_scores.shape, flush=True)
331
332
333
334
            top5_vals, top5_indices = torch.topk(retrieval_scores, k=5, sorted=True)

            top5_start_end_doc = [bucket[idx][:3] for idx in top5_indices.squeeze()]
            # top_k tuples of (block_tokens, block_pad_mask)
Neel Kant's avatar
Neel Kant committed
335
336
337
            top5_block_data = [self.ict_dataset.get_block(*indices) for indices in top5_start_end_doc]

            top5_tokens, top5_pad_masks = zip(*top5_block_data)
338
339
340
341

            all_top5_tokens.append(np.array(top5_tokens))
            all_top5_pad_masks.append(np.array(top5_pad_masks))

Neel Kant's avatar
Neel Kant committed
342
        # [batch_size x 5 x seq_length]
Neel Kant's avatar
Neel Kant committed
343
        return np.array(all_top5_tokens), np.array(all_top5_pad_masks)
Neel Kant's avatar
Neel Kant committed
344
345


346
class ICTBertModel(MegatronModule):
Neel Kant's avatar
Neel Kant committed
347
    """Bert-based module for Inverse Cloze task."""
348
349
    def __init__(self,
                 ict_head_size,
350
351
352
353
                 num_tokentypes=1,
                 parallel_output=True,
                 only_query_model=False,
                 only_block_model=False):
354
355
        super(ICTBertModel, self).__init__()
        bert_args = dict(
Neel Kant's avatar
Neel Kant committed
356
            num_tokentypes=num_tokentypes,
357
358
            add_binary_head=False,
            ict_head_size=ict_head_size,
Neel Kant's avatar
Neel Kant committed
359
360
            parallel_output=parallel_output
        )
Neel Kant's avatar
Neel Kant committed
361
        assert not (only_block_model and only_query_model)
362
363
        self.use_block_model = not only_query_model
        self.use_query_model = not only_block_model
364

365
366
367
368
        if self.use_query_model:
            # this model embeds (pseudo-)queries - Embed_input in the paper
            self.query_model = BertModel(**bert_args)
            self._query_key = 'question_model'
369

370
371
372
373
        if self.use_block_model:
            # this model embeds evidence blocks - Embed_doc in the paper
            self.block_model = BertModel(**bert_args)
            self._block_key = 'context_model'
374

Neel Kant's avatar
Neel Kant committed
375
    def forward(self, query_tokens, query_attention_mask, block_tokens, block_attention_mask, only_query=False, only_block=False):
Neel Kant's avatar
Neel Kant committed
376
        """Run a forward pass for each of the models and compute the similarity scores."""
Neel Kant's avatar
Neel Kant committed
377
378
379
380
381
382
383
384

        if only_query:
            return self.embed_query(query_tokens, query_attention_mask)

        if only_block:
            return self.embed_block(block_tokens, block_attention_mask)


385
386
387
388
389
390
391
392
393
394
        query_logits = self.embed_query(query_tokens, query_attention_mask)
        block_logits = self.embed_block(block_tokens, block_attention_mask)

        # [batch x embed] * [embed x batch]
        retrieval_scores = query_logits.matmul(torch.transpose(block_logits, 0, 1))
        return retrieval_scores

    def embed_query(self, query_tokens, query_attention_mask):
        """Embed a batch of tokens using the query model"""
        if self.use_query_model:
Neel Kant's avatar
Neel Kant committed
395
            query_types = torch.zeros(query_tokens.shape).type(torch.int64).cuda()
396
397
398
399
400
401
402
403
            query_ict_logits, _ = self.query_model.forward(query_tokens, query_attention_mask, query_types)
            return query_ict_logits
        else:
            raise ValueError("Cannot embed query without query model.")

    def embed_block(self, block_tokens, block_attention_mask):
        """Embed a batch of tokens using the block model"""
        if self.use_block_model:
Neel Kant's avatar
Neel Kant committed
404
            block_types = torch.zeros(block_tokens.shape).type(torch.int64).cuda()
405
406
407
408
            block_ict_logits, _ = self.block_model.forward(block_tokens, block_attention_mask, block_types)
            return block_ict_logits
        else:
            raise ValueError("Cannot embed block without block model.")
409

410
    def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False):
Neel Kant's avatar
Neel Kant committed
411
        """Save dict with state dicts of each of the models."""
412
        state_dict_ = {}
413
414
415
416
417
418
419
420
421
422
        if self.use_query_model:
            state_dict_[self._query_key] \
                = self.query_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

        if self.use_block_model:
            state_dict_[self._block_key] \
                = self.block_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

423
424
425
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
Neel Kant's avatar
Neel Kant committed
426
        """Load the state dicts of each of the models"""
427
        if self.use_query_model:
Neel Kant's avatar
Neel Kant committed
428
            print("Loading ICT query model", flush=True)
429
430
431
432
            self.query_model.load_state_dict(
                state_dict[self._query_key], strict=strict)

        if self.use_block_model:
Neel Kant's avatar
Neel Kant committed
433
            print("Loading ICT block model", flush=True)
434
435
            self.block_model.load_state_dict(
                state_dict[self._block_key], strict=strict)