bert_model.py 10.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

import torch

Mohammad's avatar
Mohammad committed
20
from megatron import get_args
mohammad's avatar
mohammad committed
21
from megatron import mpu
22
from megatron.model.enums import AttnMaskType
23
24
from megatron.model.language_model import parallel_lm_logits
from megatron.model.language_model import get_language_model
25
from megatron.model import import_layernorm
26
from megatron.model.utils import openai_gelu, erf_gelu
27
28
29
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
30
from .module import MegatronModule
31

Neel Kant's avatar
Neel Kant committed
32

33
def bert_extended_attention_mask(attention_mask):
Neel Kant's avatar
Neel Kant committed
34
35
36
37
38
39
40
41
42
43
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)

44
45
    # Convert attention mask to binary:
    extended_attention_mask = (extended_attention_mask < 0.5)
Neel Kant's avatar
Neel Kant committed
46

47
    return extended_attention_mask
Neel Kant's avatar
Neel Kant committed
48
49
50
51
52
53
54
55
56
57
58

def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids


59
60
61
62
63
64
65
66
class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
67
        parallel_output: whether output logits being distributed or not.
68
    """
Neel Kant's avatar
Neel Kant committed
69

70
71
72
73
74
    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

75
        args = get_args()
Neel Kant's avatar
Neel Kant committed
76

77
        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
78
        self.bias.tensor_model_parallel = True
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
79
80
        self.bias.partition_dim = 0
        self.bias.stride = 1
81
82
83
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
84
        LayerNorm = import_layernorm(args.fp32_residual_connection)
85
        self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
86
87
88
        self.gelu = torch.nn.functional.gelu
        if args.openai_gelu:
            self.gelu = openai_gelu
89
        elif args.onnx_safe:
Boris Fomitchev's avatar
Boris Fomitchev committed
90
            self.gelu = erf_gelu
91
92
93

    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
94
        hidden_states = self.gelu(hidden_states)
95
96
97
98
99
100
101
102
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output


103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def post_language_model_processing(lm_output, pooled_output,
                                   lm_head, binary_head,
                                   lm_labels,
                                   logit_weights,
                                   fp16_lm_cross_entropy):
    # Output.
    lm_logits = lm_head(
        lm_output, logit_weights)

    binary_logits = None
    if binary_head is not None:
        binary_logits = binary_head(pooled_output)

    if lm_labels is None:
        return lm_logits, binary_logits
    else:
        if fp16_lm_cross_entropy:
            assert lm_logits.dtype == torch.half
            lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits, lm_labels)
        else:
            lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits.float(),
                                                       lm_labels)
        return lm_loss, binary_logits


128
class BertModelBase(MegatronModule):
129
130
    """Bert Language model."""

Mohammad's avatar
Mohammad committed
131
    def __init__(self, num_tokentypes=2, add_binary_head=True,
132
                 parallel_output=True):
133
        super(BertModelBase, self).__init__()
Mohammad's avatar
Mohammad committed
134
        args = get_args()
135

mohammad's avatar
mohammad committed
136
        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
137
138
        self.add_binary_head = add_binary_head
        self.parallel_output = parallel_output
139

Mohammad's avatar
Mohammad committed
140
141
142
        init_method = init_method_normal(args.init_method_std)
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
Neel Kant's avatar
Neel Kant committed
143

144
145
        self.language_model, self._language_model_key = get_language_model(
            num_tokentypes=num_tokentypes,
146
            add_pooler=self.add_binary_head,
147
            encoder_attn_mask_type=AttnMaskType.padding,
148
            init_method=init_method,
149
            scaled_init_method=scaled_init_method)
150

151
        self.initialize_word_embeddings(init_method_normal)
152
        if mpu.is_pipeline_last_stage():
153
154
155
156
157
158
159
160
161
162
163
            self.lm_head = BertLMHead(
                self.word_embeddings_weight().size(0),
                args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
            self._lm_head_key = 'lm_head'
            self.binary_head = None
            if self.add_binary_head:
                self.binary_head = get_linear_layer(args.hidden_size, 2,
                                                    init_method)
                self._binary_head_key = 'binary_head'

    def forward(self, bert_model_input, attention_mask,
mohammad's avatar
mohammad committed
164
                tokentype_ids=None, lm_labels=None):
165

166
        extended_attention_mask = bert_extended_attention_mask(attention_mask)
167
168

        kwargs = {}
169
        if mpu.is_pipeline_first_stage():
170
171
172
173
            input_ids = bert_model_input
            position_ids = bert_position_ids(input_ids)
            args = [input_ids, position_ids, extended_attention_mask]
            kwargs['tokentype_ids'] = tokentype_ids
174
        else:
175
176
            args = [bert_model_input, extended_attention_mask]
        lm_output = self.language_model(*args, **kwargs)
177
        if mpu.is_pipeline_last_stage() and self.add_binary_head:
178
            lm_output, pooled_output = lm_output
mohammad's avatar
mohammad committed
179
        else:
180
181
            pooled_output = None

182
        if mpu.is_pipeline_last_stage():
183
184
185
186
187
188
189
            return post_language_model_processing(lm_output, pooled_output,
                                                  self.lm_head, self.binary_head,
                                                  lm_labels,
                                                  self.word_embeddings_weight(),
                                                  self.fp16_lm_cross_entropy)
        else:
            return lm_output
190
191
192
193
194
195
196
197
198
199


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
200
            destination, prefix, keep_vars)
201
        if mpu.is_pipeline_last_stage():
202
203
204
            state_dict_[self._lm_head_key] \
                = self.lm_head.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
205
        if mpu.is_pipeline_last_stage() and self.add_binary_head:
206
207
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
208
        # Save word_embeddings.
209
        if mpu.is_pipeline_last_stage() and not mpu.is_pipeline_first_stage():
210
211
            state_dict_[self._word_embeddings_for_head_key] \
                = self.word_embeddings.state_dict(destination, prefix, keep_vars)
212
213
214
215
216
217
218
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
219
        if mpu.is_pipeline_last_stage():
220
221
            self.lm_head.load_state_dict(
                state_dict[self._lm_head_key], strict=strict)
222
        if mpu.is_pipeline_last_stage() and self.add_binary_head:
Neel Kant's avatar
Neel Kant committed
223
224
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)
225
        # Load word_embeddings.
226
        if mpu.is_pipeline_last_stage() and not mpu.is_pipeline_first_stage():
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
            self.word_embeddings.load_state_dict(
                state_dict[self._word_embeddings_for_head_key], strict=strict)


class BertModel(BertModelBase):

    def __init__(self, num_tokentypes=2, add_binary_head=True,
                 parallel_output=True):
        super(BertModel, self).__init__(
            num_tokentypes=num_tokentypes,
            add_binary_head=add_binary_head,
            parallel_output=parallel_output)

    def forward(self, input_ids, attention_mask,
                tokentype_ids=None, lm_labels=None):
        return super(BertModel, self).forward(
            input_ids,
            attention_mask,
            tokentype_ids=tokentype_ids,
            lm_labels=lm_labels)


class BertModelFirstStage(BertModelBase):

    def __init__(self, num_tokentypes=2):
        super(BertModelFirstStage, self).__init__(
            num_tokentypes=num_tokentypes)

    def forward(self, input_ids, attention_mask,
                tokentype_ids=None):
        return super(BertModelFirstStage, self).forward(
            input_ids,
            attention_mask,
            tokentype_ids=tokentype_ids)


class BertModelIntermediateStage(BertModelBase):

    def __init__(self, num_tokentypes=2):
        super(BertModelIntermediateStage, self).__init__(
            num_tokentypes=num_tokentypes)

    def forward(self, hidden_state, attention_mask):
        return super(BertModelIntermediateStage, self).forward(
            hidden_state,
            attention_mask)


class BertModelLastStage(BertModelBase):

    def __init__(self, num_tokentypes=2, add_binary_head=True,
                 parallel_output=True):
        super(BertModelLastStage, self).__init__(
            num_tokentypes=num_tokentypes,
            add_binary_head=add_binary_head,
            parallel_output=parallel_output)

    def forward(self, hidden_state, attention_mask,
                lm_labels=None):
        return super(BertModelLastStage, self).forward(
            hidden_state,
            attention_mask,
            lm_labels=lm_labels)