README.md 34.6 KB
Newer Older
1
[Megatron](https://arxiv.org/pdf/1909.08053.pdf) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor and pipeline), and multi-node pre-training of [GPT](https://arxiv.org/abs/2005.14165) and [BERT](https://arxiv.org/pdf/1810.04805.pdf) using mixed precision.
Mohammad's avatar
Mohammad committed
2

3
4
5
6
7
8
9
10
11
Below are some of the projects where we have directly used Megatron:
* [BERT and GPT Studies Using Megatron](https://arxiv.org/pdf/1909.08053.pdf)
* [BioMegatron: Larger Biomedical Domain Language Model](https://www.aclweb.org/anthology/2020.emnlp-main.379.pdf)
* [End-to-End Training of Neural Retrievers for Open-Domain Question Answering](https://arxiv.org/abs/2101.00408)
* [Large Scale Multi-Actor Generative Dialog Modeling](https://www.aclweb.org/anthology/2020.acl-main.8.pdf)
* [Local Knowledge Powered Conversational Agents](https://arxiv.org/abs/2010.10150)
* [MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models](https://www.aclweb.org/anthology/2020.emnlp-main.226.pdf)
* [RACE Reading Comprehension Dataset Leaderboard](http://www.qizhexie.com/data/RACE_leaderboard.html)
* [Training Question Answering Models From Synthetic Data](https://www.aclweb.org/anthology/2020.emnlp-main.468.pdf)
Mohammad's avatar
Mohammad committed
12

13
Our codebase is capable of efficiently training very large (hundreds of billions of parameters) language models with both model and data parallelism. To demonstrate how the code scales with multiple GPUs and model sizes, we consider GPT models from 1 billion all the way to 1 trillion parameters. All models use a vocabulary size of 51,200 and a sequence length of 2048. We vary hidden size, number of attention heads, and number of layers to arrive at a specifc model size. As the model size increases, we also modestly increase the batch size. We leverage [NVIDIA's Selene supercomputer](https://www.top500.org/system/179842/) to perform scaling studies and use up to 3072 [A100](https://www.nvidia.com/en-us/data-center/a100/) GPUs for the largest model. The table below shows the model configurations along with the achieved FLOPs per second (both per GPU and aggregate over all GPUs). Note that the FLOPs are measured for end-to-end training, i.e., includes all operations including data loading, optimization, and even logging.
14

15
![Cases](images/cases_jan2021.png)
16

17
The following figures show achieved percentage of theoretical peak FLOPs and achieved aggregate petaFLOPs per second as a function of number of GPUs. All the cases from 1 billion to 1 trillion achieve more than 41% half precision utilization, which is high for an end-to-end application. We observe that initially as the model parallel size increases, utilization slightly decreases; as hidden size increases for larger models, utilization starts increasing and reaches 49% for the largest model. We also note that achieved aggregate petaFLOPs per second across all GPUs increases almost linearly with number of GPUs, demonstrating good weak scaling.
18

19
![Model Parallel Scaling](images/scaling.png)
20

Mohammad's avatar
Mohammad committed
21
# Contents
Jared Casper's avatar
TOC fix  
Jared Casper committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
   * [Contents](#contents)
   * [Setup](#setup)
      * [Downloading Checkpoints](#downloading-checkpoints)
   * [Usage](#usage)
   * [Training](#training)
      * [Data Preprocessing](#data-preprocessing)
      * [BERT Pretraining](#bert-pretraining)
      * [GPT Pretraining](#gpt-pretraining)
      * [Distributed BERT or GPT Pretraining](#distributed-bert-or-gpt-pretraining)
      * [GPT-3 Example](#gpt-3-example)
   * [Evaluation and Tasks](#evaluation-and-tasks)
      * [GPT Text Generation](#gpt-text-generation)
      * [GPT Evaluation](#gpt-evaluation)
         * [WikiText Perplexity Evaluation](#wikitext-perplexity-evaluation)
         * [LAMBADA Cloze Accuracy](#lambada-cloze-accuracy)
      * [BERT Task Evaluation](#bert-task-evaluation)
         * [RACE Evaluation](#race-evaluation)
         * [MNLI Evaluation](#mnli-evaluation)
   * [Datasets](#datasets)
      * [Collecting Wikipedia Training Data](#collecting-wikipedia-training-data)
      * [Collecting GPT Webtext Data](#collecting-gpt-webtext-data)
43

Mohammad's avatar
Mohammad committed
44
# Setup
45
We have tested Megatron with [NGC's PyTorch container](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) version 20.12, which uses python 3.8, pytorch 1.8, cuda 11.1, and nccl 2.8.3.
46

47
To use this repository, please install the latest supported versions of PyTorch with GPU support (python 3.8, pytorch 1.8, cuda 11.1, and nccl 2.8.3 and above) and NVIDIA [APEX](https://github.com/NVIDIA/apex#quick-start). We strongly recommend using one of [NGC's recent PyTorch containers](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) (the latest compatible version at time of publication can be pulled with `docker pull nvcr.io/nvidia/pytorch:20.12-py3`). Data preprocessing requires [NLTK](https://www.nltk.org/install.html), though this is not required for training, evaluation, or downstream tasks.
Evelina Bakhturina's avatar
update2  
Evelina Bakhturina committed
48

49
<!--
Evelina Bakhturina's avatar
update  
Evelina Bakhturina committed
50
To use megatron you can either clone the repo or install it via pip (make sure python3-dev is installed):
Evelina Bakhturina's avatar
update2  
Evelina Bakhturina committed
51
<pre>
Evelina Bakhturina's avatar
update  
Evelina Bakhturina committed
52
pip install megatron-lm
Evelina Bakhturina's avatar
update2  
Evelina Bakhturina committed
53
</pre>
54
-->
Raul Puri's avatar
Raul Puri committed
55

Mohammad's avatar
Mohammad committed
56
## Downloading Checkpoints
57
58
59
We have provided pretrained [BERT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m) and [GPT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m) checkpoints for use to evaluate or finetuning downstream tasks. To access these checkpoints, first [sign up](https://ngc.nvidia.com/signup) for and [setup](https://ngc.nvidia.com/setup/installers/cli) the NVIDIA GPU Cloud (NGC) Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1).

Alternatively, you can directly download the checkpoints using:
Raul Puri's avatar
Raul Puri committed
60

Mohammad's avatar
Mohammad committed
61
<pre>
62
63
64
BERT-345M-uncased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O megatron_bert_345m_v0.1_uncased.zip
BERT-345M-cased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O megatron_bert_345m_v0.1_cased.zip
GPT-345M: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip
Mohammad's avatar
Mohammad committed
65
</pre>
Raul Puri's avatar
Raul Puri committed
66

67
The models require vocabulary files to run. The BERT  WordPiece vocab file can be extracted from Google's pretrained BERT models: [uncased](https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt), [cased](https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt). The GPT [vocab file](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json) and [merge table](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt) can be downloaded directly. 
Raul Puri's avatar
Raul Puri committed
68
69
70

# Usage

Mohammad's avatar
Mohammad committed
71
72
73
74
75
76
77
78
After installation, there are several possible workflows. The most comprehensive is:
1. Data preprocessing
2. Pretraining
3. Finetuning (Optional for zero-shot tasks)
4. Downstream task evaluation or text generation

However, steps 1 and 2 can be replaced by using one of the pretrained models mentioned above.

79
We've provided several scripts for pretraining both BERT and GPT in [`examples`](./examples) directory, as well as scripts for both zero-shot and fine-tuned downstream tasks including MNLI, RACE, WikiText103, and LAMBADA evaluation. There is also a script for GPT interactive text generation.
Mohammad's avatar
Mohammad committed
80
81
82

# Training
## Data Preprocessing
83
The training data requires preprocessing. First, place your training data in a loose json format, with one json containing a text sample per line. For example:
Mohammad's avatar
Mohammad committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
<pre>
{"src": "www.nvidia.com", "text": "The quick brown fox", "type": "Eng", "id": "0", "title": "First Part"}
{"src": "The Internet", "text": "jumps over the lazy dog", "type": "Eng", "id": "42", "title": "Second Part"}
</pre>

The name of the `text` field of the json can be changed by using the `--json-key` flag in [`preprocess_data.py`](./tools/preprocess_data.py) The other metadata are optional and are not used in training.

The loose json is then processed into a binary format for training. To convert the json into mmap, cached index file, or the lazy loader format use `preprocess_data.py`. Set the `--dataset-impl` flag to `mmap`, `cached`, or `lazy`, respectively (default is `mmap`). An example script to prepare data for BERT training is:
<pre>
python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-bert \
       --vocab bert-vocab.txt \
       --dataset-impl mmap \
       --tokenizer-type BertWordPieceLowerCase \
       --split-sentences
</pre>

The output will be two files named, in this case, `my-bert_text_sentence.bin` and `my-bert_text_sentence.idx`. The `--data-path` specified in later BERT training is the full path and new filename, but without the file extension.

104
Some minor modifications are required for GPT data preprocessing, namely, the addition of a merge table, an end-of-document token, removal of sentence splitting, and a change to the tokenizer type:
Mohammad's avatar
Mohammad committed
105
106
107
108
109
110
111
112
113
114
<pre>
python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-gpt2 \
       --vocab gpt2-vocab.json \
       --dataset-impl mmap \
       --tokenizer-type GPT2BPETokenizer \
       --merge-file gpt2-merges.txt \
       --append-eod
</pre>
Raul Puri's avatar
Raul Puri committed
115

116
Here the output files are named `my-gpt2_text_document.bin` and `my-gpt2_text_document.idx`. As before, in GPT training, use the longer name without the extension as `--data-path`.
Raul Puri's avatar
Raul Puri committed
117

Mohammad's avatar
Mohammad committed
118
119
120
121
122
Further command line arguments are described in the source file [`preprocess_data.py`](./tools/preprocess_data.py).

## BERT Pretraining
`bash examples/pretrain_bert.sh`

123
This script runs single GPU 345M parameter BERT pretraining. Debugging is the primary use for single GPU training, as the code base and command line arguments are optimized for highly distributed training. Most of the arguments are fairly self-explanatory. By default, the learning rate decays linearly over the training iterations starting at `--lr` to a minimum set by `--min-lr` over `--lr-decay-iters` iterations. The fraction of training iterations used for warmup is set by `--lr-warmup-fraction`. While this is single GPU training, the batch size specified by `--micro-batch-size` is a single forward-backward path batch-size and the code will perform gradient accumulation steps until it reaches `global-batch-size` whcih is the batch size per iteration. The data is partitioned into a 949:50:1 ratio for training/validation/test sets (default is 969:30:1). This partitioning happens on the fly, but is consistent across runs with the same random seed (1234 by default, or specified manually with `--seed`). We use `train-iters` as the training iterations requested. Alternatively, one can provide `--train-samples` which is total number of samples to train on. If this option is present, then instead of providing `--lr-decay-iters`, one will need to provide `--lr-decay-samples`.
Mohammad's avatar
Mohammad committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137

The logging, checkpoint-saving, and evaluation intervals are specified. Checkpointing the activations facilitates the training of larger models and/or batches. Note that the `--data-path` now includes the additional `_text_sentence` suffix added in preprocessing, but does not include the file extensions.

<pre>
CHECKPOINT_PATH=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
DATA_PATH=my-bert_text_sentence

BERT_ARGS="--num-layers 24 \
           --hidden-size 1024 \
           --num-attention-heads 16 \
           --seq-length 512 \
           --max-position-embeddings 512 \
           --lr 0.0001 \
138
           --lr-decay-iters 990000 \
Mohammad's avatar
Mohammad committed
139
140
           --train-iters 2000000 \
           --min-lr 0.00001 \
141
142
143
           --lr-warmup-fraction 0.01 \
	   --micro-batch-size 4 \	   
           --global-batch-size 8 \
Mohammad's avatar
Mohammad committed
144
145
146
147
148
149
150
151
152
           --vocab-file $VOCAB_FILE \
           --split 949,50,1 \
           --fp16"

OUTPUT_ARGS="--log-interval 10 \
             --save-interval 500 \
             --eval-interval 100 \
             --eval-iters 10 \
             --checkpoint-activations"
Raul Puri's avatar
Raul Puri committed
153
154

python pretrain_bert.py \
Mohammad's avatar
Mohammad committed
155
156
157
158
159
160
161
162
163
164
       $BERT_ARGS \
       $OUTPUT_ARGS \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data-path $DATA_PATH
</pre>

Further command line arguments are described in the source file [`arguments.py`](./megatron/arguments.py).


165
166
167
168
## GPT Pretraining
`bash examples/pretrain_gpt.sh`

This script runs single GPU 345M parameter GPT pretraining. As mentioned above, single GPU training is primarily intended for debugging purposes, as the code is optimized for distributed training.
Mohammad's avatar
Mohammad committed
169
170
171
172
173
174
175
176
177

It follows largely the same format as the previous BERT script with a few notable differences: the tokenization scheme used is BPE (which requires a merge table and a `json` vocabulary file) instead of WordPiece, the model architecture allows for longer sequences (note that the max position embedding must be greater than or equal to the maximum sequence length), and the `--lr-decay-style` has been set to cosine decay.  Note that the `--data-path` now includes the additional `_text_document` suffix added in preprocessing, but does not include the file extensions.

<pre>
CHECKPOINT_PATH=checkpoints/gpt2_345m
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
DATA_PATH=my-gpt2_text_document

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
GPT_ARGS="--num-layers 24 \
          --hidden-size 1024 \
          --num-attention-heads 16 \
          --seq-length 1024 \
          --max-position-embeddings 1024 \
          --micro-batch-size 4 \
          --global-batch-size 8 \
          --lr 0.00015 \
          --train-iters 500000 \
          --lr-decay-iters 320000 \
          --lr-decay-style cosine \
          --vocab-file $VOCAB_FILE \
          --merge-file $MERGE_FILE \
          --lr-warmup-fraction .01 \
          --fp16"
Mohammad's avatar
Mohammad committed
193
194
195

OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

196
197
python pretrain_gpt.py \
       $GPT_ARGS \
Mohammad's avatar
Mohammad committed
198
199
200
201
202
203
204
205
       $OUTPUT_ARGS \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data-path $DATA_PATH \
</pre>

Further command line arguments are described in the source file [`arguments.py`](./megatron/arguments.py).

206
## Distributed BERT or GPT Pretraining
Mohammad's avatar
Mohammad committed
207
208
`bash examples/pretrain_bert_distributed.sh`

209
210
211
`bash examples/pretrain_gpt_distributed.sh`

These scripts use the PyTorch distributed launcher for distributed training. As such, multi-node training can be achieved by properly setting environment variables and using `init_method='env://'` in the launcher. See the official PyTorch [documentation](https://pytorch.org/docs/stable/distributed.html#launch-utility) for further description of these [environment variables](https://pytorch.org/docs/stable/distributed.html#environment-variable-initialization). By default, multi-node training uses the [nccl](https://developer.nvidia.com/nccl) distributed backend. A simple set of additional arguments and the use of the PyTorch distributed module with the Python flag `-m torch.distributed.launch`, detailed below, are the only additional requirements to adopt distributed training.
Mohammad's avatar
Mohammad committed
212

213
We use two types of parallelism: data and model parallelism. We facilitate two distributed data parallel implementations: a simple one of our own that performs gradient all-reduce at the end of back propagation step, and Torch's distributed data parallel wrapper that overlaps gradient reduction with back propagation computation. To switch between these two options use `--DDP-impl local` or `--DDP-impl torch`, respectively. As expected, Torch distributed data parallelism is more efficient at larger model sizes. For example, for the 8.3 billion parameters model running on 512 GPUs, the scaling increases from 60% to 76% when Torch's distributed data parallel is used. However, the overlapping method requires more memory and for some configurations (e.g., 2.5 billion parameters using 2-way model parallel and 1.2 billion parameters with no model parallel) can make the overall training slower as a result. We empirically found that using a smaller model in those cases improves the training time.
Mohammad's avatar
Mohammad committed
214

215
Second, we developed a simple and efficient two-dimensional model-parallel approach. To use tensor model parallelism (splitting execution of a single transformer module over multiple GPUs), add the `--tensor-model-parallel-size` flag to specify the number of GPUs among which to split the model, along with the arguments passed to the distributed launcher as mentioned above. To use pipeline model parallelism (sharding the transformer modules into stages with an equal number of transformer modules on each stage, and then pipelining execution by breaking the batch into smaller microbatches), use the `--pipeline-model-parallel-size` flag to specify the number of stages to split the model into (e.g., splitting a model with 24 transformer layers across 4 stages would mean each stage gets 6 transformer layers each).
Mohammad's avatar
Mohammad committed
216

217
<!-- The number of microbatches in a per-pipeline minibatch is controlled by the `--num-microbatches-in-minibatch` argument. With `WORLD_SIZE` GPUs, `TENSOR_MP_SIZE` tensor-model-parallel size, `PIPELINE_MP_SIZE` pipeline-model-parallel-size, `WORLD_SIZE`/(`TENSOR_MP_SIZE` * `PIPELINE_MP_SIZE`) GPUs will be used for data parallelism. The default values for `--tensor-model-parallel-size` and `--pipeline-model-parallel-size` is 1, which will not implement either form of model parallelism. -->
218
219

We have examples of how to use these two different forms of model parallelism in these scripts:
220

221
222
`bash examples/pretrain_bert_distributed_with_mp.sh`

223
`bash examples/pretrain_gpt_distributed_with_mp.sh`
Mohammad's avatar
Mohammad committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

Other than these minor changes, the distributed training is identical to the training on a single GPU.

Distributed BERT training:
<pre>
WORLD_SIZE=8
MP_SIZE=2

DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \
                  --nnodes 1 \
                  --node_rank 0 \
                  --master_addr localhost \
                  --master_port 6000"

CHECKPOINT_PATH=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
DATA_PATH=my-bert_text_sentence
BERT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;
OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

python -m torch.distributed.launch $DISTRIBUTED_ARGS ./pretrain_bert.py \
                $BERT_ARGS \
                $OUTPUT_ARGS \
                --save $CHECKPOINT_PATH \
                --load $CHECKPOINT_PATH \
                --data-path $DATA_PATH \
250
                --tensor-model-parallel-size $MP_SIZE \
Mohammad's avatar
Mohammad committed
251
252
253
                --DDP-impl torch
</pre>

254
Distributed GPT training:
Mohammad's avatar
Mohammad committed
255
256
257
258
259
260
261
262
263
264
<pre>
WORLD_SIZE=8
MP_SIZE=2

DISTRIBUTED_ARGS=&#60;same as those directly above&#62;

CHECKPOINT_PATH=checkpoints/gpt2_345m
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
DATA_PATH=my-gpt2_text_document
265
GPT_ARGS=&#60;same as those in <a href="#gpt-pretraining">GPT pretraining</a> above&#62;
Mohammad's avatar
Mohammad committed
266
267
OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

268
269
python -m torch.distributed.launch $DISTRIBUTED_ARGS ./pretrain_gpt.py \
                $GPT_ARGS \
Mohammad's avatar
Mohammad committed
270
271
272
273
                $OUTPUT_ARGS \
                --save $CHECKPOINT_PATH \
                --load $CHECKPOINT_PATH \
                --data-path $DATA_PATH \
274
                --tensor-model-parallel-size $MP_SIZE \
Mohammad's avatar
Mohammad committed
275
276
277
278
                --DDP-impl torch

</pre>

279
280
281
282
283
284
285
286
287
## GPT-3 Example
`bash examples/pretrain_gpt3_175B.sh`

We have provided an example of how to configure Megatron to run [GPT-3](https://arxiv.org/abs/2005.14165) with 175 billion parameters on 1024 GPUs. The script is designed for [slurm](https://slurm.schedmd.com/documentation.html) with [pyxis](https://github.com/NVIDIA/pyxis) plugin but can be easily adopted to any other scheduler. It uses 8-way and 16-way tensor and pipeline parallelism, respectively. With options `global-batch-size 1536` and `rampup-batch-size 16 16 5859375`, the training will start with global batch size 16 and linearly increase the global batch size to 1536 over 5,859,375 samples with incrmeental steps 16. The training dataset can be either a single set or a multiple datasets combined with a set of weights.

With full global batch size of 1536 on 1024 A100 GPUs, each iteration takes around 32 seconds resulting in 138 teraFLOPs per GPU which is 44% of the theoretical peak FLOPs.


<!--
Neel Kant's avatar
Neel Kant committed
288
## REALM Pipeline
289
We are working on implementing the [REALM](https://arxiv.org/pdf/2002.08909.pdf) system. The following sections (will) reflect the three stages of training it. For now it's just the ICT code.
Neel Kant's avatar
Neel Kant committed
290
Loosely, they are pretraining the retriever modules, then jointly training the language model and the retriever, and then finetuning a question answering head on the language model with fixed retriever.
Neel Kant's avatar
Neel Kant committed
291
292

### Inverse Cloze Task (ICT) Pretraining
293
294
295
1. Have a corpus in loose JSON format with the intention of creating a collection of fixed-size blocks of text as the fundamental units of data. For a corpus like Wikipedia, this will mean multiple sentences per block but also multiple blocks per document.
Run `tools/preprocess_data.py` to construct one or more indexed datasets with the `--split-sentences` argument to make sentences the basic unit. For the original REALM system, we construct two datasets, one with the title of every document, and another with the body.
Refer to the following script
Neel Kant's avatar
Neel Kant committed
296
297
<pre>
python preprocess_data.py \
Neel Kant's avatar
Neel Kant committed
298
    --input /path/to/corpus.json \
Neel Kant's avatar
Neel Kant committed
299
300
301
    --json-keys text title \
    --split-sentences \
    --tokenizer-type BertWordPieceLowerCase \
Neel Kant's avatar
Neel Kant committed
302
303
    --vocab-file /path/to/vocab.txt \
    --output-prefix corpus_indexed \
Neel Kant's avatar
Neel Kant committed
304
305
306
307
    --workers 5  # works well for 10 CPU cores. Scale up accordingly.
</pre>

2. Use a custom samples mapping function in place of `megatron/data/realm_dataset_utils.get_block_samples_mapping` if required. To do this, you will need to implement a new function in C++ inside of `megatron/data/helpers.cpp`. The samples mapping data structure is used to select the data that will constitute every training sample in advance of the training loop.
308
 The samples mapping is responsible for holding all of the required metadata needed to construct the sample from one or more indexed datasets. In REALM, the samples mapping contains the start and end sentence indices, as well as the document index (to find the correct title for a body) and a unique ID for every block.
Neel Kant's avatar
Neel Kant committed
309
310
3. Pretrain a BERT language model using `pretrain_bert.py`, with the sequence length equal to the block size in token ids. This model should be trained on the same indexed dataset that is used to supply the blocks for the information retrieval task.
In REALM, this is an uncased bert base model trained with the standard hyperparameters.
311
312
4. Use `pretrain_ict.py` to train an `ICTBertModel` which uses two BERT-based encoders to encode queries and blocks to perform retrieval with.
The script below trains the ICT model from REALM. It refrences a pretrained BERT model (step 3) in the `--bert-load` argument. The batch size used in the paper is 4096, so this would need to be run with data parallel world size 32.
Neel Kant's avatar
Neel Kant committed
313
<pre>
Neel Kant's avatar
Neel Kant committed
314
python pretrain_ict.py \
Neel Kant's avatar
Neel Kant committed
315
316
317
318
319
320
321
322
323
    --num-layers 12 \
    --num-attention-heads 12 \
    --hidden-size 768 \
    --batch-size 128 \
    --seq-length 256 \
    --max-position-embeddings 256 \
    --ict-head-size 128 \
    --train-iters 100000 \
    --checkpoint-activations \
Neel Kant's avatar
Neel Kant committed
324
325
326
327
328
329
    --bert-load /path/to/pretrained_bert \
    --load checkpoints \
    --save checkpoints \
    --data-path /path/to/indexed_dataset \
    --titles-data-path /path/to/titles_indexed_dataset \
    --vocab-file /path/to/vocab.txt \
Neel Kant's avatar
Neel Kant committed
330
331
332
333
334
    --lr 0.0001 \
    --num-workers 2 \
    --lr-decay-style linear \
    --weight-decay 1e-2 \
    --clip-grad 1.0 \
335
    --lr-warmup-fraction .01 \
Neel Kant's avatar
Neel Kant committed
336
337
    --save-interval 3000 \
    --query-in-block-prob 0.1 \
Neel Kant's avatar
Neel Kant committed
338
    --fp16
339

Neel Kant's avatar
Neel Kant committed
340
341
</pre>

Neel Kant's avatar
Neel Kant committed
342
### Building an Index of Block Embeddings
343
344
After having trained an ICT model, you can now embed an entire dataset of blocks by creating a `BlockData` structure. After that has been saved, you can load it
and wrap it with a `FaissMIPSIndex` to do fast similarity search which is key in the learned information retrieval pipeline. The initial index can be built with the following script, meant to be run in an interactive session. It can leverage multiple GPUs on multiple nodes to index large datasets much more quickly.
Neel Kant's avatar
Neel Kant committed
345
346

<pre>
Neel Kant's avatar
Neel Kant committed
347
python tools/create_doc_index.py \
Neel Kant's avatar
Neel Kant committed
348
349
350
351
352
353
354
355
    --num-layers 12 \
    --hidden-size 768 \
    --ict-head-size 128 \
    --num-attention-heads 12 \
    --batch-size 128 \
    --checkpoint-activations \
    --seq-length 256 \
    --max-position-embeddings 256 \
Neel Kant's avatar
Neel Kant committed
356
357
358
359
    --ict-load /path/to/pretrained_ict \
    --data-path /path/to/indexed_dataset \
    --titles-data-path /path/to/titles_indexed_dataset \
    --block-data-path embedded_blocks.pkl \
Neel Kant's avatar
Neel Kant committed
360
361
    --indexer-log-interval 1000 \
    --indexer-batch-size 128 \
Neel Kant's avatar
Neel Kant committed
362
    --vocab-file /path/to/vocab.txt \
Neel Kant's avatar
Neel Kant committed
363
364
365
366
    --num-workers 2 \
    --fp16
</pre>

367
368
-->

Mohammad's avatar
Mohammad committed
369
370
371
372
# Evaluation and Tasks

We provide several command line arguments, detailed in the scripts listed below, to handle various zero-shot and fine-tuned downstream tasks. However, you can also finetune your model from a pretrained checkpoint on other corpora as desired. To do so, simply add the `--finetune` flag and adjust the input files and training parameters within the original training script. The iteration count will be reset to zero, and the optimizer and internal state will be reinitialized. If the fine-tuning is interrupted for any reason, be sure to remove the `--finetune` flag before continuing, otherwise the training will start again from the beginning.

373
Because evaluation requires substantially less memory than training, it may be advantageous to merge a model trained in parallel for use on a single GPU in downstream tasks. The following script accomplishes this. Currently only tensor model parallelism is supported on input and pipeline model parallelsim on the output. This example reads in a model with 2-way tensor model parallelism and writes out a model with 2-way pipeline model parallelism.
Mohammad's avatar
Mohammad committed
374
375

<pre>
376
TENSOR_MODEL_PARALLEL_SIZE=2
377
TARGET_PIPELINE_MODEL_PARALLEL_SIZE=2
Mohammad's avatar
Mohammad committed
378
379
380
381

VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m

382
WORLD_SIZE=$TENSOR_MODEL_PARALLEL_SIZE python tools/merge_mp_partitions.py \
Mohammad's avatar
Mohammad committed
383
        --model-type BERT \
384
        --tensor-model-parallel-size $TENSOR_MODEL_PARALLEL_SIZE \
385
386
        --pipeline-model-parallel-size 1 \
        --target-pipeline-model-parallel-size $TARGET_PIPELINE_MODEL_PARALLEL_SIZE \
Mohammad's avatar
Mohammad committed
387
388
389
390
391
392
393
394
        --tokenizer-type BertWordPieceLowerCase \
        --vocab-file $VOCAB_FILE \
        --num-layers 24 \
        --hidden-size 1024 \
        --num-attention-heads 16 \
        --seq-length 512 \
        --max-position-embeddings 512 \
        --load $CHECKPOINT_PATH
Jared Casper's avatar
Jared Casper committed
395
        --save $CHECKPOINT_PATH/merged
Mohammad's avatar
Mohammad committed
396
397

</pre>
Jared Casper's avatar
Jared Casper committed
398

399
Several downstream tasks are described for both GPT and BERT models below. They can be run in distributed and model parallel modes with the same changes used in the training scripts.
Mohammad's avatar
Mohammad committed
400

401
## GPT Text Generation
Mohammad's avatar
Mohammad committed
402
403
`bash examples/generate_text.sh`

404
We generate text samples using largely the GPT pretraining script. Few changes need to make, such as we need to provide the path to the pretrained checkpoint, the length of the output samples, whether to generate texts unconditionally (`--num-samples` to denote how many samples to generate) or conditional (need to pass `--sample-input-file <filename>` where each line of the file will be used as the conditional texts). There are few optional parameters to play, e.g. `top-k`, `top-p`, or `greedy` (set top-k and top-p to 0) sampling..
Mohammad's avatar
Mohammad committed
405
406
407
408
409

<pre>
CHECKPOINT_PATH=checkpoints/gpt2_345m
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
410
GPT_ARGS=&#60;same as those in <a href="#gpt-pretraining">GPT pretraining</a> above&#62;
Mohammad's avatar
Mohammad committed
411
412
413
414
415
416
417

MAX_OUTPUT_SEQUENCE_LENGTH=1024
TEMPERATURE=1.0
TOP_P=0.9
NUMBER_OF_SAMPLES=2
OUTPUT_FILE=samples.json

418
419
python tools/generate_samples_gpt.py \
       $GPT_ARGS \
Mohammad's avatar
Mohammad committed
420
421
422
423
424
425
426
427
428
       --load $CHECKPOINT_PATH \
       --out-seq-length $MAX_OUTPUT_SEQUENCE_LENGTH \
       --temperature $TEMPERATURE \
       --genfile $OUTPUT_FILE \
       --num-samples $NUMBER_OF_SAMPLES \
       --top_p $TOP_P \
       --recompute
</pre>

429
430
## GPT Evaluation
We include example scripts for GPT evaluation on WikiText perplexity evaluation and LAMBADA Cloze accuracy.
Mohammad's avatar
Mohammad committed
431
432
433
434

### WikiText Perplexity Evaluation
For even comparison with prior works, we evaluate perplexity on the word-level [WikiText-103 test dataset](https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip), and appropriately compute perplexity given the change in tokens when using our subword tokenizer.

Steven Steinke's avatar
Steven Steinke committed
435
We use the following command to run WikiText-103 evaluation on a 345M parameter model.
Mohammad's avatar
Mohammad committed
436
437
438
<pre>
TASK="WIKITEXT103"

439
VALID_DATA=&#60;wikitext path&#62;.txt
Mohammad's avatar
Mohammad committed
440
441
442
443
444
445
446
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m

COMMON_TASK_ARGS="--num-layers 24 \
                  --hidden-size 1024 \
                  --num-attention-heads 16 \
447
448
                  --seq-length 1024 \
                  --max-position-embeddings 1024 \
Mohammad's avatar
Mohammad committed
449
450
451
452
453
454
455
                  --fp16 \
                  --vocab-file $VOCAB_FILE"

python tasks/main.py \
       --task $TASK \
       $COMMON_TASK_ARGS \
       --valid-data $VALID_DATA \
456
       --tokenizer-type GPT2BPETokenizer \
Mohammad's avatar
Mohammad committed
457
458
       --merge-file $MERGE_FILE \
       --load $CHECKPOINT_PATH \
459
       --micro-batch-size 8 \
460
       --checkpoint-activations \
Mohammad's avatar
Mohammad committed
461
462
463
464
       --log-interval 10 \
       --no-load-optim \
       --no-load-rng
</pre>
465
466


Mohammad's avatar
Mohammad committed
467
468
### LAMBADA Cloze Accuracy
To compute LAMBADA cloze accuracy (the accuracy of predicting the last token given the preceeding tokens) we utilize a detokenized, processed version of the [LAMBADA dataset](https://github.com/cybertronai/bflm/blob/master/lambada_test.jsonl).
469

470
We use the following command to run LAMBADA evaluation on a 345M parameter model. Note that the `--strict-lambada` flag should be used to require whole word matching. Make that `lambada` is part of the file path.
Raul Puri's avatar
Raul Puri committed
471

Mohammad's avatar
Mohammad committed
472
473
<pre>
TASK="LAMBADA"
474

475
VALID_DATA=&#60;lambada path&#62;.json
Mohammad's avatar
Mohammad committed
476
477
478
479
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m
COMMON_TASK_ARGS=&#60;same as those in <a href="#wikitext-perplexity-evaluation">WikiText Perplexity Evaluation</a> above&#62;
Raul Puri's avatar
Raul Puri committed
480

Mohammad's avatar
Mohammad committed
481
482
483
484
485
486
487
488
python tasks/main.py \
       --task $TASK \
       $COMMON_TASK_ARGS \
       --valid-data $VALID_DATA \
       --tokenizer-type GPT2BPETokenizer \
       --strict-lambada \
       --merge-file $MERGE_FILE \
       --load $CHECKPOINT_PATH \
489
       --micro-batch-size 8 \
Mohammad's avatar
Mohammad committed
490
491
492
493
494
495
496
497
498
499
       --checkpoint-activations \
       --log-interval 10 \
       --no-load-optim \
       --no-load-rng
</pre>

Further command line arguments are described in the source file [`main.py`](./tasks/main.py)

## BERT Task Evaluation
### RACE Evaluation
500
The following script finetunes the BERT model for evaluation on the [RACE dataset](http://www.cs.cmu.edu/~glai1/data/race/). The `TRAIN_DATA` and `VALID_DATA` directory contain the RACE dataset as separate `.txt` files. Note that for RACE, the batch size is the number of RACE query's to evaluate. Since each RACE query has four samples, the effective batch size passed through the model will be four times the batch size specified on the command line.
Mohammad's avatar
Mohammad committed
501
502
503
504
505
506
507
508

<pre>
TRAIN_DATA="data/RACE/train/middle"
VALID_DATA="data/RACE/dev/middle \
            data/RACE/dev/high"
VOCAB_FILE=bert-vocab.txt
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
CHECKPOINT_PATH=checkpoints/bert_345m_race
Steven Steinke's avatar
Steven Steinke committed
509
COMMON_TASK_ARGS="--num-layers 24 \
510
511
512
513
514
515
                  --hidden-size 1024 \
                  --num-attention-heads 16 \
                  --seq-length 512 \
                  --max-position-embeddings 512 \
                  --fp16 \
                  --vocab-file $VOCAB_FILE"
Mohammad's avatar
Mohammad committed
516
517
518
519
520

COMMON_TASK_ARGS_EXT="--train-data $TRAIN_DATA \
                      --valid-data $VALID_DATA \
                      --pretrained-checkpoint $PRETRAINED_CHECKPOINT \
                      --checkpoint-activations \
521
                      --save-interval 10000 \
Mohammad's avatar
Mohammad committed
522
                      --save $CHECKPOINT_PATH \
523
524
525
                      --log-interval 100 \
                      --eval-interval 1000 \
                      --eval-iters 10 \
Mohammad's avatar
Mohammad committed
526
527
528
529
530
531
532
533
                      --weight-decay 1.0e-1"

python tasks/main.py \
       --task RACE \
       $COMMON_TASK_ARGS \
       $COMMON_TASK_ARGS_EXT \
       --tokenizer-type BertWordPieceLowerCase \
       --epochs 3 \
534
       --micro-batch-size 4 \
Mohammad's avatar
Mohammad committed
535
       --lr 1.0e-5 \
536
       --lr-warmup-fraction 0.06
Mohammad's avatar
Mohammad committed
537
538
539
540
541
542
543
544
545
546
547
548
549
</pre>

### MNLI Evaluation
The following script finetunes the BERT model for evaluation with the [MultiNLI sentence pair corpus](https://www.nyu.edu/projects/bowman/multinli/). Because the matching tasks are quite similar, the script can be quickly tweaked to work with the [Quora Question Pairs](https://www.kaggle.com/quora/question-pairs-dataset) (QQP) dataset as well.

<pre>

TRAIN_DATA="data/glue_data/MNLI/train.tsv"
VALID_DATA="data/glue_data/MNLI/dev_matched.tsv \
            data/glue_data/MNLI/dev_mismatched.tsv"
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m_mnli
550
551
COMMON_TASK_ARGS=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
COMMON_TASK_ARGS_EXT=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
Mohammad's avatar
Mohammad committed
552
553
554
555
556
557
558

python tasks/main.py \
       --task MNLI \
       $COMMON_TASK_ARGS \
       $COMMON_TASK_ARGS_EXT \
       --tokenizer-type BertWordPieceLowerCase \
       --epochs 5 \
559
       --micro-batch-size 8 \
Mohammad's avatar
Mohammad committed
560
       --lr 5.0e-5 \
561
       --lr-warmup-fraction 0.065
Mohammad's avatar
Mohammad committed
562
</pre>
Raul Puri's avatar
Raul Puri committed
563

Mohammad's avatar
Mohammad committed
564
# Datasets
565
We do not host any datasets for GPT or BERT training, however, we detail their collection so that our results may be reproduced.
566
567

## Collecting Wikipedia Training Data
568
We recommend following the Wikipedia data extraction process specified by Google research: "the recommended pre-processing is to download [the latest dump](https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2), extract the text with [WikiExtractor.py](https://github.com/attardi/wikiextractor), and then apply any necessary cleanup to convert it into plain text."
569

570
We recommend using the `--json` argument when using WikiExtractor, which will dump the Wikipedia data into loose json format (one json per line), making it more manageable on the file system and also readily consumable by our codebase. We recommend further preprocessing this json dataset by nltk punctuation standardization. For BERT training, use the `--split-sentences` flag to `preprocess_data.py` as described [above](#data-preprocessing) to include sentence breaks in the produced index. If you'd like to use Wikipedia data for GPT training you should still clean it with nltk/spacy/ftfy, but do not use the `--split-sentences` flag.
571

572
## Collecting GPT Webtext Data
Mohammad's avatar
Mohammad committed
573
We utilize the publicly available [OpenWebText](https://github.com/eukaryote31/openwebtext) library from [jcpeterson](https://github.com/jcpeterson/openwebtext) and [eukaryote31's](https://github.com/eukaryote31/openwebtext) work to download urls. We then filtered, cleaned, and deduplicated all downloaded content according to the procedure described in our [openwebtext](./tools/openwebtext) directory. For reddit URLs corresponding to content up to October 2018 we arrived at approximately 37GB of content.