arguments.py 23.8 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
22
from megatron import fused_kernels
Raul Puri's avatar
Raul Puri committed
23

24
25
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
26
    """Parse all arguments."""
27
28
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
29

Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Neel Kant's avatar
Neel Kant committed
42
    parser = _add_realm_args(parser)
Mohammad's avatar
Mohammad committed
43
44
45
46

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
47

Mohammad's avatar
Mohammad committed
48
    # Parse.
49
50
51
52
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
53

Mohammad's avatar
Mohammad committed
54
55
56
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
57
58
59
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
62
63
    if args.num_microbatches_in_minibatch is None:
        args.num_microbatches_in_minibatch = 1
Mohammad's avatar
Mohammad committed
64
    if args.rank == 0:
65
66
        print('using world size: {}, tensor-model-parallel size: {}, pipeline-model-parallel size: {} '.format(
            args.world_size, args.tensor_model_parallel_size, args.pipeline_model_parallel_size))
Mohammad's avatar
Mohammad committed
67

Mohammad's avatar
Mohammad committed
68
69
70
71
    # Fp16 loss scaling.
    args.dynamic_loss_scale = False
    if args.loss_scale is None:
        args.dynamic_loss_scale = True
Mohammad's avatar
Mohammad committed
72

73
74
75
76
77
78
79
80
81
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        args.params_dtype = torch.half
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)


Mohammad's avatar
Mohammad committed
82
83
    # Set input defaults.
    for key in defaults:
Mohammad's avatar
Mohammad committed
84
85
86
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
Raul Puri's avatar
Raul Puri committed
87
        if getattr(args, key) is not None:
Raul Puri's avatar
Raul Puri committed
88
            if args.rank == 0:
Raul Puri's avatar
Raul Puri committed
89
90
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
Raul Puri's avatar
Raul Puri committed
91
92
                                               v2=getattr(args, key)),
                                               flush=True)
Raul Puri's avatar
Raul Puri committed
93
94
        else:
            setattr(args, key, defaults[key])
Mohammad's avatar
Mohammad committed
95

96
    # Check required arguments.
Mohammad's avatar
Mohammad committed
97
98
99
100
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
    for req_arg in required_args: 
        _check_arg_is_not_none(args, req_arg)
101

Mohammad's avatar
Mohammad committed
102
103
    # Checks.
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
104
105
106
107
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
108
109
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
110
111
112
113
114
115
116
117
    # Parameters sharing does not work with torch DDP.
    if (args.num_unique_layers is not None) and (args.num_layers is not None):
        assert args.num_unique_layers <= args.num_layers
        assert args.num_layers % args.num_unique_layers == 0, \
            'num-layers should be divisible by num-unique-layers.'
        if args.num_unique_layers < args.num_layers:
            assert args.DDP_impl == 'local', \
                'torch-DDP does not work with parameters sharing.'
mohammad's avatar
mohammad committed
118
119
120
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
mohammad's avatar
mohammad committed
121
122
123
124
125
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.checkpoint_activations, \
            'for distribute-checkpointed-activations to work you '\
            'need to enable checkpoint-activations'
Mohammad's avatar
Mohammad committed
126

127
128
129
130
    # load scaled_upper_triang_masked_softmax_fusion kernel
    if args.scaled_upper_triang_masked_softmax_fusion:
        fused_kernels.load_scaled_upper_triang_masked_softmax_fusion_kernel()

131
132
133
134
    # load scaled_masked_softmax_fusion kernel
    if args.scaled_masked_softmax_fusion:
        fused_kernels.load_scaled_masked_softmax_fusion_kernel()

Mohammad's avatar
Mohammad committed
135
136
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
137
138


Mohammad's avatar
Mohammad committed
139
140
141
142
143
144
145
146
147
148
149
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
        print('-------------------- arguments --------------------', flush=True)
        str_list = []
        for arg in vars(args):
            dots = '.' * (32 - len(arg))
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
        print('---------------- end of arguments ----------------', flush=True)
Mohammad's avatar
Mohammad committed
150
151


152
153
154
155
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
156
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
157
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
158

159
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
160
                       help='Number of transformer layers.')
Mohammad's avatar
Mohammad committed
161
162
163
164
    group.add_argument('--num-unique-layers', type=int, default=None,
                       help='Number of unique transformer layers. '
                       '`num-layers` should be divisible by this value.')
    group.add_argument('--param-sharing-style', default='grouped',
mohammad's avatar
mohammad committed
165
                       choices=['grouped', 'spaced'],
Mohammad's avatar
Mohammad committed
166
167
168
169
170
                       help='Ordering of the shared parameters. For example, '
                       'for a `num-layers`=4 and `--num-unique-layers`=2, '
                       'we will have the following ordering for two unique '
                       'layers 1 and 2: '
                       '    grouped: [1, 2, 1, 2] and spaced: [1, 1, 2, 2].')
171
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
172
                       help='Tansformer hidden size.')
173
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
174
                       help='Number of transformer attention heads.')
175
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
176
177
178
179
180
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
181
182
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
183
184
185
186
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
187
188
189
190
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
191
    group.add_argument('--onnx-safe', type=bool, required=False,
192
                       help='Use workarounds for known problems with Torch ONNX exporter')
Mohammad's avatar
Mohammad committed
193

Mohammad's avatar
Mohammad committed
194
195
196
    return parser


Mohammad's avatar
Mohammad committed
197
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
198
199
200
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
201
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
202
203
204
205
206
207
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
208
209
210
211
212
213
214
    group.add_argument('--adam-beta1', type=float, default=0.9,
                       help='First coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-beta2', type=float, default=0.999,
                       help='Second coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-eps', type=float, default=1e-08,
215
                       help='Term added to the denominator to improve'
216
                       'numerical stability')
Mohammad's avatar
Mohammad committed
217
218
219

    return parser

Mohammad's avatar
Mohammad committed
220
221

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
222
223
    group = parser.add_argument_group(title='training')

Mohammad's avatar
Mohammad committed
224
    group.add_argument('--batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
225
226
227
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
                       'parallel size.')
228
229
    group.add_argument('--num-microbatches-in-minibatch', type=int, default=None,
                       help='Number of microbatches in minibatch')
Mohammad's avatar
Mohammad committed
230
231
232
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
233
234
235
236
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
Mohammad's avatar
Mohammad committed
237
238
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
239
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
240
241
242
243
244
245
246
247
248
                       help='Total number of iterations to train over all '
                       'training runs.')
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
249
250
251
    group.add_argument('--scaled-upper-triang-masked-softmax-fusion',
                       action='store_true',
                       help='Enable fusion of query_key_value_scaling '
252
253
254
255
256
                       'time (upper diagonal) masking and softmax.')
    group.add_argument('--scaled-masked-softmax-fusion',
                       action='store_true',
                       help='Enable fusion of query_key_value_scaling '
                       'general masking and softmax.')
257
258
259
260
    group.add_argument('--bias-gelu-fusion', action='store_true',
                        help='Enable bias and gelu fusion.')
    group.add_argument('--bias-dropout-fusion', action='store_true',
                       help='Enable bias and dropout fusion.')
Mohammad's avatar
Mohammad committed
261
262
263
264

    return parser


Mohammad's avatar
Mohammad committed
265
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
266
267
268
269
270
271
272
273
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
Mohammad's avatar
Mohammad committed
274

Mohammad's avatar
Mohammad committed
275
276
277
    return parser


Mohammad's avatar
Mohammad committed
278
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
279
280
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
281
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
                       choices=['constant', 'linear', 'cosine', 'exponential'],
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--warmup', type=float, default=0.01,
                       help='Percentage of total iterations to warmup on '
                       '(.01 = 1 percent of all training iters).')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
312
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no-save-optim', action='store_true',
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true',
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
    group.add_argument('--no-load-optim', action='store_true',
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no-load-rng', action='store_true',
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
337
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
338
339
340
341
342
343
344
345
346
347
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
    group.add_argument('--apply-query-key-layer-scaling', action='store_true',
                       help='Scale Q * K^T by 1 / layer-number. If this flag '
                       'is set, then it will automatically set '
                       'attention-softmax-in-fp32 to true')
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
                       help='Run attention masking and softmax in fp32.')
Mohammad's avatar
Mohammad committed
348
349
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
Mohammad's avatar
Mohammad committed
350
351
352
353
354
355
356
357
358
359
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--min-scale', type=float, default=1,
                       help='Minimum loss scale for dynamic loss scale.')
360
361
362
363
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
364
365
366
367

    return parser


Mohammad's avatar
Mohammad committed
368
def _add_distributed_args(parser):
369
370
    group = parser.add_argument_group(title='distributed')

371
372
373
374
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
Mohammad's avatar
Mohammad committed
375
376
377
378
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
379
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
380
381
382
383
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
384
385
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
                       help='If set to True, initialize_megatron() skips DDP initialization'
Boris Fomitchev's avatar
Boris Fomitchev committed
386
387
                       ' and returns function to complete it instead.'
                       'Also turns on --use-cpu-initialization flag.'
388
                       'This is for external DDP manager.' )
389
390
    group.add_argument('--use-cpu-initialization', action='store_true',
                       help='If set, affine parallel weights initialization uses CPU' )
Mohammad's avatar
Mohammad committed
391
392
393
    return parser


Mohammad's avatar
Mohammad committed
394
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
395
396
397
398
399
400
401
402
403
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
404
405
406
    return parser


Mohammad's avatar
Mohammad committed
407
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
408
409
    group = parser.add_argument_group(title='data and dataloader')

Mohammad's avatar
Mohammad committed
410
    group.add_argument('--data-path', type=str, default=None,
Mohammad's avatar
Mohammad committed
411
                       help='Path to combined dataset to split.')
Mohammad's avatar
Mohammad committed
412
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
413
414
415
416
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
                       '`90,5,5` will use 90% of data for training, 5% for '
                       'validation and 5% for test.')
Mohammad's avatar
Mohammad committed
417
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
418
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
419
420
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
421
    group.add_argument('--seq-length', type=int, default=None,
Mohammad's avatar
Mohammad committed
422
423
424
425
426
427
428
429
430
                       help="Maximum sequence length to process.")
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
431
432
433
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
434
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
435
436
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
437
438
439
440
441
442
443
444
445
446
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
447

Mohammad's avatar
Mohammad committed
448
449
    return parser

Raul Puri's avatar
Raul Puri committed
450

Mohammad's avatar
Mohammad committed
451
452
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
453

Mohammad's avatar
Mohammad committed
454
455
456
457
458
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
459

Mohammad's avatar
Mohammad committed
460
    return parser
Neel Kant's avatar
Neel Kant committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480


def _add_realm_args(parser):
    group = parser.add_argument_group(title='realm')

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
                       help='Size of block embeddings to be used in ICT and REALM (paper default: 128)')

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
                       help='Directory containing an BertModel checkpoint (needed to start ICT and REALM)')

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
                       help='Probability of keeping query in block for ICT dataset')
Neel Kant's avatar
Neel Kant committed
481
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
482
483
                       help='Whether to use one sentence documents in ICT')

484
485
486
487
    # training
    group.add_argument('--report-topk-accuracies', nargs='+', default=[],
                       help="Which top-k accuracies to report (e.g. '1 5 20')")

Neel Kant's avatar
Neel Kant committed
488
489
490
    # faiss index
    group.add_argument('--faiss-use-gpu', action='store_true',
                       help='Whether create the FaissMIPSIndex on GPU')
Neel Kant's avatar
Neel Kant committed
491
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
492
                       help='Where to save/load BlockData to/from')
Neel Kant's avatar
Neel Kant committed
493
494
495
496
497
498

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
                       help='How large of batches to use when doing indexing jobs')
    group.add_argument('--indexer-log-interval', type=int, default=1000,
                       help='After how many batches should the indexer report progress')
Neel Kant's avatar
Neel Kant committed
499
500
    return parser