pretrain_vision_inpaint.py 4.72 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
2
3
4
5
6
7

"""Pretrain VIT"""

import torch
import torch.nn.functional as F
from functools import partial
xingjinliang's avatar
xingjinliang committed
8
from megatron.training import get_args, get_timers, print_rank_0, print_rank_last
9
from megatron.core.enums import ModelType
xingjinliang's avatar
xingjinliang committed
10
11
12
from megatron.legacy.data.vit_dataset import build_train_valid_datasets
from megatron.legacy.model.vision.inpainting import VitInpaintingModel
from megatron.legacy.model.vision.inpainting import MitInpaintingModel
13
from megatron.training import pretrain
xingjinliang's avatar
xingjinliang committed
14
15
16
from megatron.training.utils import average_losses_across_data_parallel_group
from tasks.vision.segmentation.metrics import SSIM, PSNR
from megatron.training.arguments import core_transformer_config_from_args
17
18
19
20

def model_provider(pre_process=True, post_process=True):
    """Build the model."""
    args = get_args()
liangjing's avatar
v1  
liangjing committed
21
    config = core_transformer_config_from_args(args)
22
    if args.vision_backbone_type == 'vit':
xingjinliang's avatar
xingjinliang committed
23
        model = VitInpaintingModel(config=config,
liangjing's avatar
v1  
liangjing committed
24
                                   pre_process=pre_process,
25
26
                                   post_process=post_process)
    elif args.vision_backbone_type == 'mit':
xingjinliang's avatar
xingjinliang committed
27
28
        model = MitInpaintingModel(config=config,
                                   pre_process=pre_process,
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
                                   post_process=post_process)
    else:
        raise Exception('{} vision backbone is not supported.'.format(
                              args.vision_backbone_type))
    return model


def get_batch(data_iterator):
    """Build the batch."""
    data = next(data_iterator)

    # only data parallelism; no need for broadcast
    images = data[0][0].cuda()
    masks = data[0][1].cuda()
    return images, masks


xingjinliang's avatar
xingjinliang committed
46
def loss_func(images, masks, masked_images, outputs, non_loss_data=False):
47
48
49
50
51
52
53
54
    outputs = outputs.contiguous().float()
    masks_flip = 1-masks
    flip_masked_outputs = outputs.masked_fill(masks_flip.bool(), 0)
    flip_masked_images = images.masked_fill(masks_flip.bool(), 0)

    ssim_fun = SSIM()
    psnr_fun = PSNR()

xingjinliang's avatar
xingjinliang committed
55
    if not non_loss_data:
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        mask_count = torch.count_nonzero(masks)
        loss = F.mse_loss(
            flip_masked_outputs,
            flip_masked_images.float(),
            reduction="sum"
        )
        loss = loss/mask_count
        ssim = ssim_fun(flip_masked_outputs, flip_masked_images.float())
        psnr = psnr_fun(flip_masked_outputs, flip_masked_images.float())

        averaged_loss = average_losses_across_data_parallel_group(
            [loss, psnr, ssim]
        )

        return loss, {"loss": averaged_loss[0],
                      "psnr": averaged_loss[1],
                      'ssim': averaged_loss[2]}
    else:
        synth_images = masked_images.float() + flip_masked_outputs
        ssim = ssim_fun(synth_images, images.float())
        psnr = psnr_fun(synth_images, images.float())
        return torch.cat((images, masked_images, synth_images), dim=2), ssim, psnr


def forward_step(data_iterator, model):
    """Forward step."""
    timers = get_timers()

    # Get the batch.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
85
    timers("batch-generator", log_level=2).start()
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    (
        images,
        masks,
    ) = get_batch(data_iterator)
    timers("batch-generator").stop()

    masked_images = images.masked_fill(masks.bool(), 0)
    outputs = model(masked_images)

    # Forward mode
    return outputs, partial(loss_func, images, masks, masked_images)


def process_non_loss_data(data, iteration, writer):
    psnr_sum = 0
    ssim_sum = 0
    for (output_tb, ssim, psnr) in data:
        output_tb[output_tb < 0] = 0
        output_tb[output_tb > 1] = 1
        writer.add_images("gt-input-output-vald", output_tb,
                          global_step=iteration, walltime=None,
                          dataformats='NCHW')
        psnr_sum = psnr_sum + psnr.item()
        ssim_sum = ssim_sum + ssim.item()
    psnr = psnr_sum/len(data)
    ssim = ssim_sum/len(data)
    writer.add_scalar('PSNR generate value-validation', psnr, iteration)
    writer.add_scalar('SSIM generate value-validation', ssim, iteration)


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
    args = get_args()

    print_rank_0(
        "> building train, validation, and test datasets " "for VIT ..."
    )
    train_ds, valid_ds = build_train_valid_datasets(
        data_path=args.data_path,
        image_size=(args.img_h, args.img_w)
    )
    print_rank_0("> finished creating VIT datasets ...")

    return train_ds, valid_ds, None


if __name__ == "__main__":

    pretrain(
        train_valid_test_datasets_provider,
        model_provider,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
137
        ModelType.encoder_or_decoder,
138
139
        forward_step,
        process_non_loss_data,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
140
        args_defaults={'dataloader_type': 'cyclic', 'vision_pretraining': True}
141
    )