pretrain_vision_inpaint.py 4.6 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
2
3
4
5
6
7

"""Pretrain VIT"""

import torch
import torch.nn.functional as F
from functools import partial
8
from megatron import get_args, get_timers, print_rank_0, print_rank_last
9
from megatron.core.enums import ModelType
10
11
12
13
14
15
from megatron.data.vit_dataset import build_train_valid_datasets
from megatron.model.vision.inpainting import VitInpaintingModel
from megatron.model.vision.inpainting import MitInpaintingModel
from megatron.training import pretrain
from megatron.utils import average_losses_across_data_parallel_group
from tasks.vision.metrics import SSIM, PSNR
liangjing's avatar
v1  
liangjing committed
16
from megatron.arguments import core_transformer_config_from_args
17
18
19
20

def model_provider(pre_process=True, post_process=True):
    """Build the model."""
    args = get_args()
liangjing's avatar
v1  
liangjing committed
21
    config = core_transformer_config_from_args(args)
22
    if args.vision_backbone_type == 'vit':
liangjing's avatar
v1  
liangjing committed
23
24
        model = VitInpaintingModel(config,
                                   pre_process=pre_process,
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
                                   post_process=post_process)
    elif args.vision_backbone_type == 'mit':
        model = MitInpaintingModel(pre_process=pre_process,
                                   post_process=post_process)
    else:
        raise Exception('{} vision backbone is not supported.'.format(
                              args.vision_backbone_type))
    return model


def get_batch(data_iterator):
    """Build the batch."""
    data = next(data_iterator)

    # only data parallelism; no need for broadcast
    images = data[0][0].cuda()
    masks = data[0][1].cuda()
    return images, masks


def loss_func(images, masks, masked_images, outputs, collect_data=False):
    outputs = outputs.contiguous().float()
    masks_flip = 1-masks
    flip_masked_outputs = outputs.masked_fill(masks_flip.bool(), 0)
    flip_masked_images = images.masked_fill(masks_flip.bool(), 0)

    ssim_fun = SSIM()
    psnr_fun = PSNR()

    if not collect_data:
        mask_count = torch.count_nonzero(masks)
        loss = F.mse_loss(
            flip_masked_outputs,
            flip_masked_images.float(),
            reduction="sum"
        )
        loss = loss/mask_count
        ssim = ssim_fun(flip_masked_outputs, flip_masked_images.float())
        psnr = psnr_fun(flip_masked_outputs, flip_masked_images.float())

        averaged_loss = average_losses_across_data_parallel_group(
            [loss, psnr, ssim]
        )

        return loss, {"loss": averaged_loss[0],
                      "psnr": averaged_loss[1],
                      'ssim': averaged_loss[2]}
    else:
        synth_images = masked_images.float() + flip_masked_outputs
        ssim = ssim_fun(synth_images, images.float())
        psnr = psnr_fun(synth_images, images.float())
        return torch.cat((images, masked_images, synth_images), dim=2), ssim, psnr


def forward_step(data_iterator, model):
    """Forward step."""
    timers = get_timers()

    # Get the batch.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
84
    timers("batch-generator", log_level=2).start()
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    (
        images,
        masks,
    ) = get_batch(data_iterator)
    timers("batch-generator").stop()

    masked_images = images.masked_fill(masks.bool(), 0)
    outputs = model(masked_images)

    # Forward mode
    return outputs, partial(loss_func, images, masks, masked_images)


def process_non_loss_data(data, iteration, writer):
    psnr_sum = 0
    ssim_sum = 0
    for (output_tb, ssim, psnr) in data:
        output_tb[output_tb < 0] = 0
        output_tb[output_tb > 1] = 1
        writer.add_images("gt-input-output-vald", output_tb,
                          global_step=iteration, walltime=None,
                          dataformats='NCHW')
        psnr_sum = psnr_sum + psnr.item()
        ssim_sum = ssim_sum + ssim.item()
    psnr = psnr_sum/len(data)
    ssim = ssim_sum/len(data)
    writer.add_scalar('PSNR generate value-validation', psnr, iteration)
    writer.add_scalar('SSIM generate value-validation', ssim, iteration)


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
    args = get_args()

    print_rank_0(
        "> building train, validation, and test datasets " "for VIT ..."
    )
    train_ds, valid_ds = build_train_valid_datasets(
        data_path=args.data_path,
        image_size=(args.img_h, args.img_w)
    )
    print_rank_0("> finished creating VIT datasets ...")

    return train_ds, valid_ds, None


if __name__ == "__main__":

    pretrain(
        train_valid_test_datasets_provider,
        model_provider,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
136
        ModelType.encoder_or_decoder,
137
138
        forward_step,
        process_non_loss_data,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
139
        args_defaults={'dataloader_type': 'cyclic', 'vision_pretraining': True}
140
    )