pretrain_vision_inpaint.py 4.95 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain VIT"""

import torch
import torch.nn.functional as F
from functools import partial
from megatron import get_args, get_timers, mpu, print_rank_0, print_rank_last
from megatron.data.vit_dataset import build_train_valid_datasets
from megatron.model.vision.inpainting import VitInpaintingModel
from megatron.model.vision.inpainting import MitInpaintingModel
from megatron.training import pretrain
from megatron.utils import average_losses_across_data_parallel_group
from tasks.vision.metrics import SSIM, PSNR
Vijay Korthikanti's avatar
Vijay Korthikanti committed
28
from megatron.model import ModelType
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

def model_provider(pre_process=True, post_process=True):
    """Build the model."""
    args = get_args()
    if args.vision_backbone_type == 'vit':
        model = VitInpaintingModel(pre_process=pre_process,
                                   post_process=post_process)
    elif args.vision_backbone_type == 'mit':
        model = MitInpaintingModel(pre_process=pre_process,
                                   post_process=post_process)
    else:
        raise Exception('{} vision backbone is not supported.'.format(
                              args.vision_backbone_type))
    return model


def get_batch(data_iterator):
    """Build the batch."""
    data = next(data_iterator)

    # only data parallelism; no need for broadcast
    images = data[0][0].cuda()
    masks = data[0][1].cuda()
    return images, masks


def loss_func(images, masks, masked_images, outputs, collect_data=False):
    outputs = outputs.contiguous().float()
    masks_flip = 1-masks
    flip_masked_outputs = outputs.masked_fill(masks_flip.bool(), 0)
    flip_masked_images = images.masked_fill(masks_flip.bool(), 0)

    ssim_fun = SSIM()
    psnr_fun = PSNR()

    if not collect_data:
        mask_count = torch.count_nonzero(masks)
        loss = F.mse_loss(
            flip_masked_outputs,
            flip_masked_images.float(),
            reduction="sum"
        )
        loss = loss/mask_count
        ssim = ssim_fun(flip_masked_outputs, flip_masked_images.float())
        psnr = psnr_fun(flip_masked_outputs, flip_masked_images.float())

        averaged_loss = average_losses_across_data_parallel_group(
            [loss, psnr, ssim]
        )

        return loss, {"loss": averaged_loss[0],
                      "psnr": averaged_loss[1],
                      'ssim': averaged_loss[2]}
    else:
        synth_images = masked_images.float() + flip_masked_outputs
        ssim = ssim_fun(synth_images, images.float())
        psnr = psnr_fun(synth_images, images.float())
        return torch.cat((images, masked_images, synth_images), dim=2), ssim, psnr


def forward_step(data_iterator, model):
    """Forward step."""
    timers = get_timers()

    # Get the batch.
    timers("batch-generator").start()
    (
        images,
        masks,
    ) = get_batch(data_iterator)
    timers("batch-generator").stop()

    masked_images = images.masked_fill(masks.bool(), 0)
    outputs = model(masked_images)

    # Forward mode
    return outputs, partial(loss_func, images, masks, masked_images)


def process_non_loss_data(data, iteration, writer):
    psnr_sum = 0
    ssim_sum = 0
    for (output_tb, ssim, psnr) in data:
        output_tb[output_tb < 0] = 0
        output_tb[output_tb > 1] = 1
        writer.add_images("gt-input-output-vald", output_tb,
                          global_step=iteration, walltime=None,
                          dataformats='NCHW')
        psnr_sum = psnr_sum + psnr.item()
        ssim_sum = ssim_sum + ssim.item()
    psnr = psnr_sum/len(data)
    ssim = ssim_sum/len(data)
    writer.add_scalar('PSNR generate value-validation', psnr, iteration)
    writer.add_scalar('SSIM generate value-validation', ssim, iteration)


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
    args = get_args()

    print_rank_0(
        "> building train, validation, and test datasets " "for VIT ..."
    )
    train_ds, valid_ds = build_train_valid_datasets(
        data_path=args.data_path,
        image_size=(args.img_h, args.img_w)
    )
    print_rank_0("> finished creating VIT datasets ...")

    return train_ds, valid_ds, None


if __name__ == "__main__":

    pretrain(
        train_valid_test_datasets_provider,
        model_provider,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
146
        ModelType.encoder_or_decoder,
147
148
149
150
        forward_step,
        process_non_loss_data,
        args_defaults={'dataloader_type': 'cyclic'}
    )