transformer.py 20.7 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""

import math
import torch
20
import torch.nn.functional as F
21

Mohammad's avatar
Mohammad committed
22
from megatron import get_args
23
from megatron import mpu
24
from megatron.mpu import LayerNorm
25
from megatron.module import MegatronModule
26
27
28
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
from megatron.model.utils import openai_gelu, erf_gelu
29

30
31
32
33
34
# flags required to enable jit fusion kernels
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
35
36
37
38
39
40
41
42
43
44
45

""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
46
    Transformer takes input of size [s, b, h] and returns a
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
        attention_mask_func: a function that takes `unmaksed-attention-scores`
            with size [b, np, s, s] and an `attention-mask` and will apply
            the masking. The function should return a masked score of the
            same size [b, np, s, s].
               masked-attention-scores = attention_mask_func(
                                     unmaksed-attention-scores, attention-mask)
"""

class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
    state back into h hidden dimension. At the end, dropout is also
    applied.
    """

66
    def __init__(self, init_method, output_layer_init_method):
67
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
68
        args = get_args()
69
70
71

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
72
            args.hidden_size,
Neel Kant's avatar
Neel Kant committed
73
            4 * args.hidden_size,
74
            gather_output=False,
75
76
            init_method=init_method,
            skip_bias_add=True)
77

78
79
80
81
82
83
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
84
85
86

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
Neel Kant's avatar
Neel Kant committed
87
            4 * args.hidden_size,
Mohammad's avatar
Mohammad committed
88
            args.hidden_size,
89
            input_is_parallel=True,
90
91
92
            init_method=output_layer_init_method,
            skip_bias_add=True)
         
93
94
95

    def forward(self, hidden_states):

96
97
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
98

99
100
101
102
103
104
105
106
107
108
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
109
110
111
112
113
114
115
116


class ParallelSelfAttention(MegatronModule):
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
117

Mohammad's avatar
Mohammad committed
118
119
    def __init__(self, attention_mask_func, init_method,
                 output_layer_init_method, layer_number):
120
        super(ParallelSelfAttention, self).__init__()
Mohammad's avatar
Mohammad committed
121
        args = get_args()
Mohammad's avatar
Mohammad committed
122
        self.fp16 = args.fp16
123
124

        self.attention_mask_func = attention_mask_func
Mohammad's avatar
Mohammad committed
125
126
        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
127
128
129
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
130
131
132

        # Per attention head and per partition values.
        world_size = mpu.get_model_parallel_world_size()
Mohammad's avatar
Mohammad committed
133
134
        self.hidden_size_per_partition = mpu.divide(args.hidden_size,
                                                    world_size)
135
        self.hidden_size_per_attention_head = mpu.divide(
Mohammad's avatar
Mohammad committed
136
            args.hidden_size, args.num_attention_heads)
137
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
138
            args.num_attention_heads, world_size)
139
140
141

        # Strided linear layer.
        self.query_key_value = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
142
            args.hidden_size,
Neel Kant's avatar
Neel Kant committed
143
            3 * args.hidden_size,
144
            gather_output=False,
Mohammad's avatar
Mohammad committed
145
            init_method=init_method)
146

147
148
149
150
151
152
153
154
155
        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16,
            args.scaled_upper_triang_masked_softmax_fusion,
156
            args.scaled_masked_softmax_fusion,
157
158
159
160
            self.attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

161
162
163
        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
Mohammad's avatar
Mohammad committed
164
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
165
166
167

        # Output.
        self.dense = mpu.RowParallelLinear(
Mohammad's avatar
Mohammad committed
168
169
            args.hidden_size,
            args.hidden_size,
170
            input_is_parallel=True,
171
172
            init_method=output_layer_init_method,
            skip_bias_add=True)
173
174


175
176
177
    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
        # hidden_states: [s, b, h]
178

179
180
181
        # =====================
        # Query, Key, and Value
        # =====================
182

183
184
        # Attention heads [s, b, hp] --> [s, b, 3 * hp]
        mixed_x_layer, _ = self.query_key_value(hidden_states)
185

186
187
188
189
190
191
192
193
194
195
        # [s, b, 3 * hp] --> [s, b, np, 3 * hn]  
        new_tensor_shape = mixed_x_layer.size()[:-1] + \
            (self.num_attention_heads_per_partition,
             3 * self.hidden_size_per_attention_head)
        mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

        # [s, b, np, 3 * hn] --> 3 [s, b, np, hn]
        (query_layer,
         key_layer,
         value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)
196
197


198
199
200
        # ==================================
        # Adjust key and value for inference
        # ==================================
201
202
203
204

        if layer_past is not None:
            past_key, past_value = layer_past
            key_layer = torch.cat((past_key.type_as(key_layer),
205
                                   key_layer), dim=0)
206
            value_layer = torch.cat((past_value.type_as(value_layer),
207
                                     value_layer), dim=0)
208
209
210
211
        if get_key_value:
            present = (key_layer, value_layer)


212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================
        
        # [b, np, s, s]
        output_size = (query_layer.size(1), 
                       query_layer.size(2), 
                       query_layer.size(0), 
                       key_layer.size(0))
        
        # [s, b, np, hn] -> [s, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

        # preallocting result tensor: [b * np, s, s]
        matmul_result = torch.empty(
            output_size[0]*output_size[1], 
            output_size[2], 
            output_size[3],
            dtype=query_layer.dtype, 
            device=torch.cuda.current_device())

        # Raw attention scores. [b * np, s, s]
        matmul_result = torch.baddbmm(matmul_result, 
            query_layer.transpose(0, 1),   # [b * np, s, hn]
            key_layer.transpose(0,1).transpose(1, 2),  #[b * np, hn, s]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, s, s]
        attention_scores = matmul_result.view(*output_size)


        # ==================================================
        # Update attention mask for inference. [b, np, s, s]
        # ==================================================
249

250
251
252
253
254
        if get_key_value:
            with torch.no_grad():
                if layer_past is not None:
                    attention_mask = attention_mask[
                        ...,
Neel Kant's avatar
Neel Kant committed
255
                        attention_scores.size(3) - 1,
256
257
258
259
260
261
262
263
                        :attention_scores.size(3)].unsqueeze(2)
                else:
                    attention_mask = attention_mask[
                        ...,
                        :attention_scores.size(3),
                        :attention_scores.size(3)]


264
265
266
        # ===========================
        # Attention probs and dropout
        # ===========================
267

268
269
270
        # attention scores and attention mask [b, np, s, s]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)
271

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with mpu.get_cuda_rng_tracker().fork():
            attention_probs = self.attention_dropout(attention_probs)


        # =========================
        # Context layer. [s, b, hp]
        # =========================

                # value_layer -> context layer.
        # [s, b, np, hn] --> [b, np, s, hn]

        # context layer shape: [b, np, s, hn]
        output_size = (value_layer.size(1), 
                       value_layer.size(2), 
                       value_layer.size(0), 
                       value_layer.size(3)) 

        # change view [s, b * np, hn] 
        value_layer = value_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        
        # change view [b * np, s, s]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)
        
        # matmul: [b * np, s, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0,1))

        # change view [b, np, s, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, s, hn] --> [s, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [s, b, np, hn] --> [s, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)


        # =================
        # Output. [s, b, h]
        # =================

        output, bias = self.dense(context_layer)
319
320
321
322

        if get_key_value:
            output = [output, present]

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
        return output, bias


def bias_dropout_add(x, bias, residual, prob, training) :
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
def bias_dropout_add_fused_train(x, bias, residual, prob) :
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
def bias_dropout_add_fused_inference(x, bias, residual, prob) :
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
    return bias_dropout_add(x, bias, residual, prob, False)
349
350
351
352
353
354
355
356


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

    Transformore layer takes input with size [b, s, h] and returns an
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
357

358
359
    def __init__(self, attention_mask_func, init_method, 
                 output_layer_init_method, layer_number):
Mohammad's avatar
Mohammad committed
360
        args = get_args()
361
362

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
363
        self.layer_number = layer_number
364
365

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
366
            = args.apply_residual_connection_post_layernorm
367
368
369

        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
370
371
            args.hidden_size,
            eps=args.layernorm_epsilon)
372
373

        # Self attention.
Mohammad's avatar
Mohammad committed
374
375
376
        self.attention = ParallelSelfAttention(attention_mask_func, init_method,
                                               output_layer_init_method,
                                               layer_number)
377
378
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
379
380
381

        # Layernorm on the input data.
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
382
383
            args.hidden_size,
            eps=args.layernorm_epsilon)
384
385

        # MLP
386
        self.mlp = ParallelMLP(init_method,
Mohammad's avatar
Mohammad committed
387
                               output_layer_init_method)
388
389
390
391
392
393
394
395

    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
        # hidden_states: [b, s, h]

        # Layer norm at the begining of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
396
397
398
399
400
401
        attention_output, attention_bias = \
            self.attention(layernorm_output,
                           attention_mask,
                           layer_past=layer_past,
                           get_key_value=get_key_value)

402
403
        if get_key_value:
            attention_output, presents = attention_output
404
    
405
406
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
407
408
409
410
411
412
413
414
415
416
417
418
419
            residual = layernorm_output
        else:
            residual = hidden_states

        # jit scripting for a nn.module (with dropout) is not 
        # trigerring the fusion kernel. For now, we use two 
        # different nn.functional routines to account for varying
        # dropout semantics during training and inference phases.
        if self.bias_dropout_fusion:
            if self.training:
                bias_dropout_add_func = bias_dropout_add_fused_train
            else:
                bias_dropout_add_func = bias_dropout_add_fused_inference
420
        else:
421
422
423
424
425
426
427
428
429
430
            bias_dropout_add_func = get_bias_dropout_add(self.training)

        #re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
            layernorm_input = bias_dropout_add_func(
                attention_output,
                attention_bias.expand_as(residual),
                residual,
                self.hidden_dropout)

431
432
433
434
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

        # MLP.
435
436
        mlp_output, mlp_bias = self.mlp(layernorm_output)
        
437
438
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
439
            residual = layernorm_output
440
        else:
441
442
443
444
445
446
447
448
449
            residual = layernorm_input

        #re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
            output = bias_dropout_add_func(
                mlp_output,
                mlp_bias.expand_as(residual),
                residual,
                self.hidden_dropout)
450
451
452
453
454
455
456
457
458
459

        if get_key_value:
            output = [output, presents]

        return output


class ParallelTransformer(MegatronModule):
    """Transformer class."""

460
    def __init__(self, attention_mask_func,
Mohammad's avatar
Mohammad committed
461
                 init_method, output_layer_init_method):
462
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
463
        args = get_args()
464
465

        # Store activation checkpoiting flag.
Mohammad's avatar
Mohammad committed
466
467
        self.checkpoint_activations = args.checkpoint_activations
        self.checkpoint_num_layers = args.checkpoint_num_layers
468

Mohammad's avatar
Mohammad committed
469
470
471
472
473
474
475
476
477
478
479
        # Number of layers:
        self.num_layers = args.num_layers
        self.num_unique_layers = args.num_unique_layers
        if self.num_unique_layers is None:
            self.num_unique_layers = self.num_layers
        assert self.num_layers % self.num_unique_layers == 0, \
            'number of layers should be divisible by number of unique layers'
        self.param_sharing_style = args.param_sharing_style

        # Transformer layers.
        def build_layer(layer_number):
480
            return ParallelTransformerLayer(
481
482
                attention_mask_func, init_method,
                output_layer_init_method, layer_number)
483
        self.layers = torch.nn.ModuleList(
Mohammad's avatar
Mohammad committed
484
485
486
487
488
489
490
            [build_layer(i + 1) for i in range(self.num_unique_layers)])

        # Print layer ordering.
        if self.num_layers != self.num_unique_layers:
            if torch.distributed.get_rank() == 0:
                print('> will be using the following layer ordering:')
                for i in range(self.num_layers):
mohammad's avatar
mohammad committed
491
492
493
                    print('   layer id: {:3d} --> unique layer id: '
                          '{:3d}'.format(i, self._get_layer_index(i)),
                          flush=True)
494
495
496

        # Final layer norm before output.
        self.final_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
497
498
            args.hidden_size,
            eps=args.layernorm_epsilon)
499

Mohammad's avatar
Mohammad committed
500
501
502
503
504
505
506
507
508
509
    def _get_layer_index(self, layer_number):
        if self.param_sharing_style == 'grouped':
            return layer_number % self.num_unique_layers
        if self.param_sharing_style == 'spaced':
            return layer_number // (self.num_layers // self.num_unique_layers) 
        assert False, 'should not be here'

    def _get_layer(self, layer_number):
        return self.layers[self._get_layer_index(layer_number)]

510
511
512
513
514
    def _checkpointed_forward(self, hidden_states, attention_mask):
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
Mohammad's avatar
Mohammad committed
515
516
                for index in range(start, end):
                    layer = self._get_layer(index)
517
518
519
520
                    x_ = layer(x_, inputs[1])
                return x_
            return custom_forward

521
522
        # Make sure memory is freed.
        mpu.reset_checkpointed_activations_memory_buffer()
523
        l = 0
Mohammad's avatar
Mohammad committed
524
        while l < self.num_layers:
525
            hidden_states = mpu.checkpoint(
Neel Kant's avatar
Neel Kant committed
526
                custom(l, l + self.checkpoint_num_layers),
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
                hidden_states, attention_mask)
            l += self.checkpoint_num_layers

        return hidden_states

    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):

        # Checks
        if layer_past is not None:
            assert get_key_value, \
                'for not None values in layer_past, ' \
                'expected get_key_value to be set'
        if get_key_value:
            assert not self.checkpoint_activations, \
                'get_key_value does not work with ' \
                'activation checkpointing'

545
546
547
        # data format change to avoid explicit tranposes : [b s h] --> [s b h]
        hidden_states = hidden_states.transpose(0, 1).contiguous()

548
549
550
551
552
553
        if self.checkpoint_activations:
            hidden_states = self._checkpointed_forward(hidden_states,
                                                       attention_mask)
        else:
            if get_key_value:
                presents = []
Mohammad's avatar
Mohammad committed
554
555
            for index in range(self.num_layers):
                layer = self._get_layer(index)
556
557
                past = None
                if layer_past is not None:
Mohammad's avatar
Mohammad committed
558
                    past = layer_past[index]
559
560
561
562
563
564
565
                hidden_states = layer(hidden_states,
                                      attention_mask,
                                      layer_past=past,
                                      get_key_value=get_key_value)
                if get_key_value:
                    hidden_states, present = hidden_states
                    presents.append(present)
566
567
568
        
        # reverting data format change [s b h] --> [b s h]
        hidden_states = hidden_states.transpose(0, 1).contiguous()
569
570
571
572
573
574
575

        # Final layer norm.
        output = self.final_layernorm(hidden_states)
        if get_key_value:
            output = [output, presents]

        return output