"src/vscode:/vscode.git/clone" did not exist on "ecc1a605551e781581bd5e7d5a882c2dcf242261"
indexed_dataset.py 18.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


# copied from fairseq/fairseq/data/indexed_dataset.py
# Removed IndexedRawTextDataset since it relied on Fairseq dictionary
# other slight modifications to remove fairseq dependencies
10
11
# Added document index to index file and made it accessible.
#    An empty sentence no longer separates documents.
12
13
14
15
16

from functools import lru_cache
import os
import shutil
import struct
17
from itertools import accumulate
18
19
20

import numpy as np
import torch
21
from megatron import print_rank_0
22

Neel Kant's avatar
Neel Kant committed
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def __best_fitting_dtype(vocab_size=None):
    if vocab_size is not None and vocab_size < 65500:
        return np.uint16
    else:
        return np.int32


def get_available_dataset_impl():
    return ['lazy', 'cached', 'mmap']


def infer_dataset_impl(path):
    if IndexedDataset.exists(path):
        with open(index_file_path(path), 'rb') as f:
            magic = f.read(8)
            if magic == IndexedDataset._HDR_MAGIC:
                return 'cached'
            elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
                return 'mmap'
            else:
                return None
    else:
46
47
        print(f"Dataset does not exist: {path}")
        print("Path should be a basename that both .idx and .bin can be appended to get full filenames.")
48
49
50
51
52
53
54
55
56
57
        return None


def make_builder(out_file, impl, vocab_size=None):
    if impl == 'mmap':
        return MMapIndexedDatasetBuilder(out_file, dtype=__best_fitting_dtype(vocab_size))
    else:
        return IndexedDatasetBuilder(out_file)


58
def make_dataset(path, impl, skip_warmup=False):
59
60
61
62
    if not IndexedDataset.exists(path):
        print(f"Dataset does not exist: {path}")
        print("Path should be a basename that both .idx and .bin can be appended to get full filenames.")
        return None
63
64
    if impl == 'infer':
        impl = infer_dataset_impl(path)
65
    if impl == 'lazy' and IndexedDataset.exists(path):
66
        return IndexedDataset(path)
67
    elif impl == 'cached' and IndexedDataset.exists(path):
68
        return IndexedCachedDataset(path)
69
    elif impl == 'mmap' and MMapIndexedDataset.exists(path):
70
        return MMapIndexedDataset(path, skip_warmup)
71
    print(f"Unknown dataset implementation: {impl}")
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    return None


def dataset_exists(path, impl):
    if impl == 'mmap':
        return MMapIndexedDataset.exists(path)
    else:
        return IndexedDataset.exists(path)


def read_longs(f, n):
    a = np.empty(n, dtype=np.int64)
    f.readinto(a)
    return a


def write_longs(f, a):
    f.write(np.array(a, dtype=np.int64))


dtypes = {
    1: np.uint8,
    2: np.int8,
    3: np.int16,
    4: np.int32,
    5: np.int64,
    6: np.float,
    7: np.double,
    8: np.uint16
}


def code(dtype):
    for k in dtypes.keys():
        if dtypes[k] == dtype:
            return k
    raise ValueError(dtype)


def index_file_path(prefix_path):
    return prefix_path + '.idx'


def data_file_path(prefix_path):
    return prefix_path + '.bin'

Neel Kant's avatar
Neel Kant committed
118

119
120
121
122
def create_doc_idx(sizes):
    doc_idx = [0]
    for i, s in enumerate(sizes):
        if s == 0:
Neel Kant's avatar
Neel Kant committed
123
            doc_idx.append(i + 1)
124
    return doc_idx
125

Neel Kant's avatar
Neel Kant committed
126

127
128
129
130
class IndexedDataset(torch.utils.data.Dataset):
    """Loader for IndexedDataset"""
    _HDR_MAGIC = b'TNTIDX\x00\x00'

131
    def __init__(self, path):
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        super().__init__()
        self.path = path
        self.data_file = None
        self.read_index(path)

    def read_index(self, path):
        with open(index_file_path(path), 'rb') as f:
            magic = f.read(8)
            assert magic == self._HDR_MAGIC, (
                'Index file doesn\'t match expected format. '
                'Make sure that --dataset-impl is configured properly.'
            )
            version = f.read(8)
            assert struct.unpack('<Q', version) == (1,)
            code, self.element_size = struct.unpack('<QQ', f.read(16))
            self.dtype = dtypes[code]
            self._len, self.s = struct.unpack('<QQ', f.read(16))
149
            self.doc_count = struct.unpack('<Q', f.read(8))
150
151
152
            self.dim_offsets = read_longs(f, self._len + 1)
            self.data_offsets = read_longs(f, self._len + 1)
            self.sizes = read_longs(f, self.s)
153
            self.doc_idx = read_longs(f, self.doc_count)
154
155
156
157
158
159
160
161
162
163
164
165

    def read_data(self, path):
        self.data_file = open(data_file_path(path), 'rb', buffering=0)

    def check_index(self, i):
        if i < 0 or i >= self._len:
            raise IndexError('index out of range')

    def __del__(self):
        if self.data_file:
            self.data_file.close()

Neel Kant's avatar
Neel Kant committed
166
    # @lru_cache(maxsize=8)
167
    def __getitem__(self, idx):
168
169
        if not self.data_file:
            self.read_data(self.path)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        if isinstance(idx, int):
            i = idx
            self.check_index(i)
            tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]]
            a = np.empty(tensor_size, dtype=self.dtype)
            self.data_file.seek(self.data_offsets[i] * self.element_size)
            self.data_file.readinto(a)
            return a
        elif isinstance(idx, slice):
            start, stop, step = idx.indices(len(self))
            if step != 1:
                raise ValueError("Slices into indexed_dataset must be contiguous")
            sizes = self.sizes[self.dim_offsets[start]:self.dim_offsets[stop]]
            size = sum(sizes)
            a = np.empty(size, dtype=self.dtype)
            self.data_file.seek(self.data_offsets[start] * self.element_size)
            self.data_file.readinto(a)
            offsets = list(accumulate(sizes))
            sents = np.split(a, offsets[:-1])
            return sents
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

    def __len__(self):
        return self._len

    def num_tokens(self, index):
        return self.sizes[index]

    def size(self, index):
        return self.sizes[index]

    @staticmethod
    def exists(path):
        return (
            os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
        )

    @property
    def supports_prefetch(self):
        return False  # avoid prefetching to save memory


class IndexedCachedDataset(IndexedDataset):

213
214
    def __init__(self, path):
        super().__init__(path)
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        self.cache = None
        self.cache_index = {}

    @property
    def supports_prefetch(self):
        return True

    def prefetch(self, indices):
        if all(i in self.cache_index for i in indices):
            return
        if not self.data_file:
            self.read_data(self.path)
        indices = sorted(set(indices))
        total_size = 0
        for i in indices:
            total_size += self.data_offsets[i + 1] - self.data_offsets[i]
        self.cache = np.empty(total_size, dtype=self.dtype)
        ptx = 0
        self.cache_index.clear()
        for i in indices:
            self.cache_index[i] = ptx
            size = self.data_offsets[i + 1] - self.data_offsets[i]
            a = self.cache[ptx: ptx + size]
            self.data_file.seek(self.data_offsets[i] * self.element_size)
            self.data_file.readinto(a)
            ptx += size
        if self.data_file:
            # close and delete data file after prefetch so we can pickle
            self.data_file.close()
            self.data_file = None

Neel Kant's avatar
Neel Kant committed
246
    # @lru_cache(maxsize=8)
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    def __getitem__(self, idx):
        if isinstance(idx, int):
            i = idx
            self.check_index(i)
            tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]]
            a = np.empty(tensor_size, dtype=self.dtype)
            ptx = self.cache_index[i]
            np.copyto(a, self.cache[ptx: ptx + a.size])
            return a
        elif isinstance(idx, slice):
            # Hack just to make this work, can optimizer later if necessary
            sents = []
            for i in range(*idx.indices(len(self))):
                sents.append(self[i])
            return sents
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281


class IndexedDatasetBuilder(object):
    element_sizes = {
        np.uint8: 1,
        np.int8: 1,
        np.int16: 2,
        np.int32: 4,
        np.int64: 8,
        np.float: 4,
        np.double: 8
    }

    def __init__(self, out_file, dtype=np.int32):
        self.out_file = open(out_file, 'wb')
        self.dtype = dtype
        self.data_offsets = [0]
        self.dim_offsets = [0]
        self.sizes = []
        self.element_size = self.element_sizes[self.dtype]
282
        self.doc_idx = [0]
283
284

    def add_item(self, tensor):
285
        bytes = self.out_file.write(np.array(tensor.numpy(), dtype=self.dtype))
286
287
288
289
290
        self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
        for s in tensor.size():
            self.sizes.append(s)
        self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size()))

291
292
293
    def end_document(self):
        self.doc_idx.append(len(self.sizes))

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    def merge_file_(self, another_file):
        index = IndexedDataset(another_file)
        assert index.dtype == self.dtype

        begin = self.data_offsets[-1]
        for offset in index.data_offsets[1:]:
            self.data_offsets.append(begin + offset)
        self.sizes.extend(index.sizes)
        begin = self.dim_offsets[-1]
        for dim_offset in index.dim_offsets[1:]:
            self.dim_offsets.append(begin + dim_offset)

        with open(data_file_path(another_file), 'rb') as f:
            while True:
                data = f.read(1024)
                if data:
                    self.out_file.write(data)
                else:
                    break

    def finalize(self, index_file):
        self.out_file.close()
        index = open(index_file, 'wb')
        index.write(b'TNTIDX\x00\x00')
        index.write(struct.pack('<Q', 1))
        index.write(struct.pack('<QQ', code(self.dtype), self.element_size))
        index.write(struct.pack('<QQ', len(self.data_offsets) - 1, len(self.sizes)))
321
        index.write(struct.pack('<Q', len(self.doc_idx)))
322
323
324
        write_longs(index, self.dim_offsets)
        write_longs(index, self.data_offsets)
        write_longs(index, self.sizes)
325
        write_longs(index, self.doc_idx)
326
327
328
329
330
        index.close()


def _warmup_mmap_file(path):
    with open(path, 'rb') as stream:
331
        while stream.read(100 * 1024 * 1024):
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
            pass


class MMapIndexedDataset(torch.utils.data.Dataset):
    class Index(object):
        _HDR_MAGIC = b'MMIDIDX\x00\x00'

        @classmethod
        def writer(cls, path, dtype):
            class _Writer(object):
                def __enter__(self):
                    self._file = open(path, 'wb')

                    self._file.write(cls._HDR_MAGIC)
                    self._file.write(struct.pack('<Q', 1))
                    self._file.write(struct.pack('<B', code(dtype)))

                    return self

                @staticmethod
                def _get_pointers(sizes):
                    dtype_size = dtype().itemsize
                    address = 0
                    pointers = []

                    for size in sizes:
                        pointers.append(address)
                        address += size * dtype_size

                    return pointers

363
                def write(self, sizes, doc_idx):
364
365
366
                    pointers = self._get_pointers(sizes)

                    self._file.write(struct.pack('<Q', len(sizes)))
367
                    self._file.write(struct.pack('<Q', len(doc_idx)))
368
369
370
371
372
373
374
375
376

                    sizes = np.array(sizes, dtype=np.int32)
                    self._file.write(sizes.tobytes(order='C'))
                    del sizes

                    pointers = np.array(pointers, dtype=np.int64)
                    self._file.write(pointers.tobytes(order='C'))
                    del pointers

377
378
379
                    doc_idx = np.array(doc_idx, dtype=np.int64)
                    self._file.write(doc_idx.tobytes(order='C'))

380
381
382
383
384
                def __exit__(self, exc_type, exc_val, exc_tb):
                    self._file.close()

            return _Writer()

385
        def __init__(self, path, skip_warmup=False):
386
387
388
389
390
391
392
393
394
395
396
397
398
399
            with open(path, 'rb') as stream:
                magic_test = stream.read(9)
                assert self._HDR_MAGIC == magic_test, (
                    'Index file doesn\'t match expected format. '
                    'Make sure that --dataset-impl is configured properly.'
                )
                version = struct.unpack('<Q', stream.read(8))
                assert (1,) == version

                dtype_code, = struct.unpack('<B', stream.read(1))
                self._dtype = dtypes[dtype_code]
                self._dtype_size = self._dtype().itemsize

                self._len = struct.unpack('<Q', stream.read(8))[0]
400
                self._doc_count = struct.unpack('<Q', stream.read(8))[0]
401
402
                offset = stream.tell()

403
            if not skip_warmup:
404
                print_rank_0("    warming up index mmap file...")
405
                _warmup_mmap_file(path)
406
407
408

            self._bin_buffer_mmap = np.memmap(path, mode='r', order='C')
            self._bin_buffer = memoryview(self._bin_buffer_mmap)
409
            print_rank_0("    reading sizes...")
Neel Kant's avatar
Neel Kant committed
410
411
412
413
414
            self._sizes = np.frombuffer(
                self._bin_buffer,
                dtype=np.int32,
                count=self._len,
                offset=offset)
415
            print_rank_0("    reading pointers...")
416
417
            self._pointers = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._len,
                                           offset=offset + self._sizes.nbytes)
418
            print_rank_0("    reading document index...")
419
420
            self._doc_idx = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._doc_count,
                                          offset=offset + self._sizes.nbytes + self._pointers.nbytes)
Neel Kant's avatar
Neel Kant committed
421

422
423
424
425
426
427
428
429
430
431
432
433
        def __del__(self):
            self._bin_buffer_mmap._mmap.close()
            del self._bin_buffer_mmap

        @property
        def dtype(self):
            return self._dtype

        @property
        def sizes(self):
            return self._sizes

434
435
436
437
        @property
        def doc_idx(self):
            return self._doc_idx

438
439
440
441
442
443
444
        @lru_cache(maxsize=8)
        def __getitem__(self, i):
            return self._pointers[i], self._sizes[i]

        def __len__(self):
            return self._len

445
    def __init__(self, path, skip_warmup=False):
446
447
448
449
450
451
        super().__init__()

        self._path = None
        self._index = None
        self._bin_buffer = None

452
        self._do_init(path, skip_warmup)
453
454
455
456
457
458
459

    def __getstate__(self):
        return self._path

    def __setstate__(self, state):
        self._do_init(state)

460
    def _do_init(self, path, skip_warmup):
461
        self._path = path
462
        self._index = self.Index(index_file_path(self._path), skip_warmup)
463

464
        if not skip_warmup:
465
            print_rank_0("    warming up data mmap file...")
466
            _warmup_mmap_file(data_file_path(self._path))
467
        print_rank_0("    creating numpy buffer of mmap...")
468
        self._bin_buffer_mmap = np.memmap(data_file_path(self._path), mode='r', order='C')
469
        print_rank_0("    creating memory view of numpy buffer...")
470
471
472
473
474
475
476
477
478
479
        self._bin_buffer = memoryview(self._bin_buffer_mmap)

    def __del__(self):
        self._bin_buffer_mmap._mmap.close()
        del self._bin_buffer_mmap
        del self._index

    def __len__(self):
        return len(self._index)

Neel Kant's avatar
Neel Kant committed
480
    # @lru_cache(maxsize=8)
481
482
483
    def __getitem__(self, idx):
        if isinstance(idx, int):
            ptr, size = self._index[idx]
484
485
            np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype,
                                     count=size, offset=ptr)
486
            return np_array
487
488
489
490
491
492
493
494
        elif isinstance(idx, slice):
            start, stop, step = idx.indices(len(self))
            if step != 1:
                raise ValueError("Slices into indexed_dataset must be contiguous")
            ptr = self._index._pointers[start]
            sizes = self._index._sizes[idx]
            offsets = list(accumulate(sizes))
            total_size = sum(sizes)
495
496
            np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype,
                                     count=total_size, offset=ptr)
497
498
            sents = np.split(np_array, offsets[:-1])
            return sents
499

500
    def get(self, idx, offset=0, length=None):
501
502
503
504
505
        """ Retrieves a single item from the dataset with the option to only
        return a portion of the item.

        get(idx) is the same as [idx] but get() does not support slicing.
        """
506
507
508
509
510
511
512
513
        ptr, size = self._index[idx]
        if length is None:
            length = size - offset
        ptr += offset * np.dtype(self._index.dtype).itemsize
        np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype,
                                 count=length, offset=ptr)
        return np_array

514
515
516
517
    @property
    def sizes(self):
        return self._index.sizes

518
519
520
521
    @property
    def doc_idx(self):
        return self._index.doc_idx

522
523
524
525
526
527
    def get_doc_idx(self):
        return self._index._doc_idx

    def set_doc_idx(self, doc_idx_):
        self._index._doc_idx = doc_idx_

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    @property
    def supports_prefetch(self):
        return False

    @staticmethod
    def exists(path):
        return (
            os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
        )


class MMapIndexedDatasetBuilder(object):
    def __init__(self, out_file, dtype=np.int64):
        self._data_file = open(out_file, 'wb')
        self._dtype = dtype
        self._sizes = []
544
        self._doc_idx = [0]
545
546
547
548
549
550

    def add_item(self, tensor):
        np_array = np.array(tensor.numpy(), dtype=self._dtype)
        self._data_file.write(np_array.tobytes(order='C'))
        self._sizes.append(np_array.size)

551
552
553
    def end_document(self):
        self._doc_idx.append(len(self._sizes))

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    def merge_file_(self, another_file):
        # Concatenate index
        index = MMapIndexedDataset.Index(index_file_path(another_file))
        assert index.dtype == self._dtype

        for size in index.sizes:
            self._sizes.append(size)

        # Concatenate data
        with open(data_file_path(another_file), 'rb') as f:
            shutil.copyfileobj(f, self._data_file)

    def finalize(self, index_file):
        self._data_file.close()

        with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
570
            index.write(self._sizes, self._doc_idx)