indexed_dataset.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


# copied from fairseq/fairseq/data/indexed_dataset.py
# Removed IndexedRawTextDataset since it relied on Fairseq dictionary
# other slight modifications to remove fairseq dependencies
10
11
# Added document index to index file and made it accessible.
#    An empty sentence no longer separates documents.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

from functools import lru_cache
import os
import shutil
import struct

import numpy as np
import torch

def __best_fitting_dtype(vocab_size=None):
    if vocab_size is not None and vocab_size < 65500:
        return np.uint16
    else:
        return np.int32


def get_available_dataset_impl():
    return ['lazy', 'cached', 'mmap']


def infer_dataset_impl(path):
    if IndexedDataset.exists(path):
        with open(index_file_path(path), 'rb') as f:
            magic = f.read(8)
            if magic == IndexedDataset._HDR_MAGIC:
                return 'cached'
            elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
                return 'mmap'
            else:
                return None
    else:
        return None


def make_builder(out_file, impl, vocab_size=None):
    if impl == 'mmap':
        return MMapIndexedDatasetBuilder(out_file, dtype=__best_fitting_dtype(vocab_size))
    else:
        return IndexedDatasetBuilder(out_file)


def make_dataset(path, impl, fix_lua_indexing=False):
    if impl == 'lazy' and IndexedDataset.exists(path):
        return IndexedDataset(path, fix_lua_indexing=fix_lua_indexing)
    elif impl == 'cached' and IndexedDataset.exists(path):
        return IndexedCachedDataset(path, fix_lua_indexing=fix_lua_indexing)
    elif impl == 'mmap' and MMapIndexedDataset.exists(path):
        return MMapIndexedDataset(path)
    return None


def dataset_exists(path, impl):
    if impl == 'mmap':
        return MMapIndexedDataset.exists(path)
    else:
        return IndexedDataset.exists(path)


def read_longs(f, n):
    a = np.empty(n, dtype=np.int64)
    f.readinto(a)
    return a


def write_longs(f, a):
    f.write(np.array(a, dtype=np.int64))


dtypes = {
    1: np.uint8,
    2: np.int8,
    3: np.int16,
    4: np.int32,
    5: np.int64,
    6: np.float,
    7: np.double,
    8: np.uint16
}


def code(dtype):
    for k in dtypes.keys():
        if dtypes[k] == dtype:
            return k
    raise ValueError(dtype)


def index_file_path(prefix_path):
    return prefix_path + '.idx'


def data_file_path(prefix_path):
    return prefix_path + '.bin'

106
107
108
109
110
111
def create_doc_idx(sizes):
    doc_idx = [0]
    for i, s in enumerate(sizes):
        if s == 0:
            doc_idx.append(i+1)
    return doc_idx
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

class IndexedDataset(torch.utils.data.Dataset):
    """Loader for IndexedDataset"""
    _HDR_MAGIC = b'TNTIDX\x00\x00'

    def __init__(self, path, fix_lua_indexing=False):
        super().__init__()
        self.path = path
        self.fix_lua_indexing = fix_lua_indexing
        self.data_file = None
        self.read_index(path)

    def read_index(self, path):
        with open(index_file_path(path), 'rb') as f:
            magic = f.read(8)
            assert magic == self._HDR_MAGIC, (
                'Index file doesn\'t match expected format. '
                'Make sure that --dataset-impl is configured properly.'
            )
            version = f.read(8)
            assert struct.unpack('<Q', version) == (1,)
            code, self.element_size = struct.unpack('<QQ', f.read(16))
            self.dtype = dtypes[code]
            self._len, self.s = struct.unpack('<QQ', f.read(16))
136
            self.doc_count = struct.unpack('<Q', f.read(8))
137
138
139
            self.dim_offsets = read_longs(f, self._len + 1)
            self.data_offsets = read_longs(f, self._len + 1)
            self.sizes = read_longs(f, self.s)
140
            self.doc_idx = read_longs(f, self.doc_count)
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

    def read_data(self, path):
        self.data_file = open(data_file_path(path), 'rb', buffering=0)

    def check_index(self, i):
        if i < 0 or i >= self._len:
            raise IndexError('index out of range')

    def __del__(self):
        if self.data_file:
            self.data_file.close()

    @lru_cache(maxsize=8)
    def __getitem__(self, i):
        if not self.data_file:
            self.read_data(self.path)
        self.check_index(i)
        tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]]
        a = np.empty(tensor_size, dtype=self.dtype)
        self.data_file.seek(self.data_offsets[i] * self.element_size)
        self.data_file.readinto(a)
        item = torch.from_numpy(a).long()
        if self.fix_lua_indexing:
            item -= 1  # subtract 1 for 0-based indexing
        return item

    def __len__(self):
        return self._len

    def num_tokens(self, index):
        return self.sizes[index]

    def size(self, index):
        return self.sizes[index]

    @staticmethod
    def exists(path):
        return (
            os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
        )

    @property
    def supports_prefetch(self):
        return False  # avoid prefetching to save memory


class IndexedCachedDataset(IndexedDataset):

    def __init__(self, path, fix_lua_indexing=False):
        super().__init__(path, fix_lua_indexing=fix_lua_indexing)
        self.cache = None
        self.cache_index = {}

    @property
    def supports_prefetch(self):
        return True

    def prefetch(self, indices):
        if all(i in self.cache_index for i in indices):
            return
        if not self.data_file:
            self.read_data(self.path)
        indices = sorted(set(indices))
        total_size = 0
        for i in indices:
            total_size += self.data_offsets[i + 1] - self.data_offsets[i]
        self.cache = np.empty(total_size, dtype=self.dtype)
        ptx = 0
        self.cache_index.clear()
        for i in indices:
            self.cache_index[i] = ptx
            size = self.data_offsets[i + 1] - self.data_offsets[i]
            a = self.cache[ptx: ptx + size]
            self.data_file.seek(self.data_offsets[i] * self.element_size)
            self.data_file.readinto(a)
            ptx += size
        if self.data_file:
            # close and delete data file after prefetch so we can pickle
            self.data_file.close()
            self.data_file = None

    @lru_cache(maxsize=8)
    def __getitem__(self, i):
        self.check_index(i)
        tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]]
        a = np.empty(tensor_size, dtype=self.dtype)
        ptx = self.cache_index[i]
        np.copyto(a, self.cache[ptx: ptx + a.size])
        item = torch.from_numpy(a).long()
        if self.fix_lua_indexing:
            item -= 1  # subtract 1 for 0-based indexing
        return item


class IndexedDatasetBuilder(object):
    element_sizes = {
        np.uint8: 1,
        np.int8: 1,
        np.int16: 2,
        np.int32: 4,
        np.int64: 8,
        np.float: 4,
        np.double: 8
    }

    def __init__(self, out_file, dtype=np.int32):
        self.out_file = open(out_file, 'wb')
        self.dtype = dtype
        self.data_offsets = [0]
        self.dim_offsets = [0]
        self.sizes = []
        self.element_size = self.element_sizes[self.dtype]
253
        self.doc_idx = [0]
254
255

    def add_item(self, tensor):
256
        bytes = self.out_file.write(np.array(tensor.numpy(), dtype=self.dtype))
257
258
259
260
261
        self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
        for s in tensor.size():
            self.sizes.append(s)
        self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size()))

262
263
264
    def end_document(self):
        self.doc_idx.append(len(self.sizes))

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    def merge_file_(self, another_file):
        index = IndexedDataset(another_file)
        assert index.dtype == self.dtype

        begin = self.data_offsets[-1]
        for offset in index.data_offsets[1:]:
            self.data_offsets.append(begin + offset)
        self.sizes.extend(index.sizes)
        begin = self.dim_offsets[-1]
        for dim_offset in index.dim_offsets[1:]:
            self.dim_offsets.append(begin + dim_offset)

        with open(data_file_path(another_file), 'rb') as f:
            while True:
                data = f.read(1024)
                if data:
                    self.out_file.write(data)
                else:
                    break

    def finalize(self, index_file):
        self.out_file.close()
        index = open(index_file, 'wb')
        index.write(b'TNTIDX\x00\x00')
        index.write(struct.pack('<Q', 1))
        index.write(struct.pack('<QQ', code(self.dtype), self.element_size))
        index.write(struct.pack('<QQ', len(self.data_offsets) - 1, len(self.sizes)))
292
        index.write(struct.pack('<Q', len(self.doc_idx)))
293
294
295
        write_longs(index, self.dim_offsets)
        write_longs(index, self.data_offsets)
        write_longs(index, self.sizes)
296
        write_longs(index, self.doc_idx)
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        index.close()


def _warmup_mmap_file(path):
    with open(path, 'rb') as stream:
        while stream.read(100 * 1024 * 1024):
            pass


class MMapIndexedDataset(torch.utils.data.Dataset):
    class Index(object):
        _HDR_MAGIC = b'MMIDIDX\x00\x00'

        @classmethod
        def writer(cls, path, dtype):
            class _Writer(object):
                def __enter__(self):
                    self._file = open(path, 'wb')

                    self._file.write(cls._HDR_MAGIC)
                    self._file.write(struct.pack('<Q', 1))
                    self._file.write(struct.pack('<B', code(dtype)))

                    return self

                @staticmethod
                def _get_pointers(sizes):
                    dtype_size = dtype().itemsize
                    address = 0
                    pointers = []

                    for size in sizes:
                        pointers.append(address)
                        address += size * dtype_size

                    return pointers

334
                def write(self, sizes, doc_idx):
335
336
337
                    pointers = self._get_pointers(sizes)

                    self._file.write(struct.pack('<Q', len(sizes)))
338
                    self._file.write(struct.pack('<Q', len(doc_idx)))
339
340
341
342
343
344
345
346
347

                    sizes = np.array(sizes, dtype=np.int32)
                    self._file.write(sizes.tobytes(order='C'))
                    del sizes

                    pointers = np.array(pointers, dtype=np.int64)
                    self._file.write(pointers.tobytes(order='C'))
                    del pointers

348
349
350
                    doc_idx = np.array(doc_idx, dtype=np.int64)
                    self._file.write(doc_idx.tobytes(order='C'))

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
                def __exit__(self, exc_type, exc_val, exc_tb):
                    self._file.close()

            return _Writer()

        def __init__(self, path):
            with open(path, 'rb') as stream:
                magic_test = stream.read(9)
                assert self._HDR_MAGIC == magic_test, (
                    'Index file doesn\'t match expected format. '
                    'Make sure that --dataset-impl is configured properly.'
                )
                version = struct.unpack('<Q', stream.read(8))
                assert (1,) == version

                dtype_code, = struct.unpack('<B', stream.read(1))
                self._dtype = dtypes[dtype_code]
                self._dtype_size = self._dtype().itemsize

                self._len = struct.unpack('<Q', stream.read(8))[0]
371
                self._doc_count = struct.unpack('<Q', stream.read(8))[0]
372
373
374
375
376
377
378
379
380
                offset = stream.tell()

            _warmup_mmap_file(path)

            self._bin_buffer_mmap = np.memmap(path, mode='r', order='C')
            self._bin_buffer = memoryview(self._bin_buffer_mmap)
            self._sizes = np.frombuffer(self._bin_buffer, dtype=np.int32, count=self._len, offset=offset)
            self._pointers = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._len,
                                           offset=offset + self._sizes.nbytes)
381
382
            self._doc_idx = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._doc_count,
                                          offset=offset + self._sizes.nbytes + self._pointers.nbytes)
383
384
385
386
387
388
389
390
391
392
393
394
        def __del__(self):
            self._bin_buffer_mmap._mmap.close()
            del self._bin_buffer_mmap

        @property
        def dtype(self):
            return self._dtype

        @property
        def sizes(self):
            return self._sizes

395
396
397
398
        @property
        def doc_idx(self):
            return self._doc_idx

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        @lru_cache(maxsize=8)
        def __getitem__(self, i):
            return self._pointers[i], self._sizes[i]

        def __len__(self):
            return self._len

    def __init__(self, path):
        super().__init__()

        self._path = None
        self._index = None
        self._bin_buffer = None

        self._do_init(path)

    def __getstate__(self):
        return self._path

    def __setstate__(self, state):
        self._do_init(state)

    def _do_init(self, path):
        self._path = path
        self._index = self.Index(index_file_path(self._path))

        _warmup_mmap_file(data_file_path(self._path))
        self._bin_buffer_mmap = np.memmap(data_file_path(self._path), mode='r', order='C')
        self._bin_buffer = memoryview(self._bin_buffer_mmap)

    def __del__(self):
        self._bin_buffer_mmap._mmap.close()
        del self._bin_buffer_mmap
        del self._index

    def __len__(self):
        return len(self._index)

    @lru_cache(maxsize=8)
    def __getitem__(self, i):
        ptr, size = self._index[i]
        np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr)
        if self._index.dtype != np.int64:
            np_array = np_array.astype(np.int64)

        return torch.from_numpy(np_array)

    @property
    def sizes(self):
        return self._index.sizes

450
451
452
453
    @property
    def doc_idx(self):
        return self._index.doc_idx

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    @property
    def supports_prefetch(self):
        return False

    @staticmethod
    def exists(path):
        return (
            os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
        )


class MMapIndexedDatasetBuilder(object):
    def __init__(self, out_file, dtype=np.int64):
        self._data_file = open(out_file, 'wb')
        self._dtype = dtype
        self._sizes = []
470
        self._doc_idx = [0]
471
472
473
474
475
476

    def add_item(self, tensor):
        np_array = np.array(tensor.numpy(), dtype=self._dtype)
        self._data_file.write(np_array.tobytes(order='C'))
        self._sizes.append(np_array.size)

477
478
479
    def end_document(self):
        self._doc_idx.append(len(self._sizes))

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    def merge_file_(self, another_file):
        # Concatenate index
        index = MMapIndexedDataset.Index(index_file_path(another_file))
        assert index.dtype == self._dtype

        for size in index.sizes:
            self._sizes.append(size)

        # Concatenate data
        with open(data_file_path(another_file), 'rb') as f:
            shutil.copyfileobj(f, self._data_file)

    def finalize(self, index_file):
        self._data_file.close()

        with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
            index.write(self._sizes, self._doc_idx)

class indexed_doc_dataset(torch.utils.data.Dataset):
    def __init__(self, path):
        impl = infer_dataset_impl(path)
        self.ds = make_dataset(path, impl)
        self._docs = []
        doc_idxs = []
        for i, s in enumerate(self._sizes):
            if s > 0:
                doc_idxs.append(i)
            else:
                self._docs.append(doc_idxs)
                doc_idxs = []

    def __getitem__(self, i):
        if not isinstance(i, tuple):
            raise ValueError("Index into indexed_doc_dataset must be a tuple")
        idx = self._docs[i[0]][i[1]]
        return self.ds[idx]

    def __len__(self):
        """Returns number of documents, not number of sentences"""
        return len(self._docs)

    def doc_len(self, d):
        return len(self._docs[d])