indexed_dataset.py 17.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


# copied from fairseq/fairseq/data/indexed_dataset.py
# Removed IndexedRawTextDataset since it relied on Fairseq dictionary
# other slight modifications to remove fairseq dependencies
10
11
# Added document index to index file and made it accessible.
#    An empty sentence no longer separates documents.
12
13
14
15
16

from functools import lru_cache
import os
import shutil
import struct
17
from itertools import accumulate
18
19
20

import numpy as np
import torch
21
from megatron import print_rank_0
22

Neel Kant's avatar
Neel Kant committed
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def __best_fitting_dtype(vocab_size=None):
    if vocab_size is not None and vocab_size < 65500:
        return np.uint16
    else:
        return np.int32


def get_available_dataset_impl():
    return ['lazy', 'cached', 'mmap']


def infer_dataset_impl(path):
    if IndexedDataset.exists(path):
        with open(index_file_path(path), 'rb') as f:
            magic = f.read(8)
            if magic == IndexedDataset._HDR_MAGIC:
                return 'cached'
            elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
                return 'mmap'
            else:
                return None
    else:
46
        print(f"Dataset path does not exist: {path}")
47
48
49
50
51
52
53
54
55
56
        return None


def make_builder(out_file, impl, vocab_size=None):
    if impl == 'mmap':
        return MMapIndexedDatasetBuilder(out_file, dtype=__best_fitting_dtype(vocab_size))
    else:
        return IndexedDatasetBuilder(out_file)


57
58
59
def make_dataset(path, impl, skip_warmup=False):
    if impl == 'infer':
        impl = infer_dataset_impl(path)
60
    if impl == 'lazy' and IndexedDataset.exists(path):
61
        return IndexedDataset(path)
62
    elif impl == 'cached' and IndexedDataset.exists(path):
63
        return IndexedCachedDataset(path)
64
    elif impl == 'mmap' and MMapIndexedDataset.exists(path):
65
        return MMapIndexedDataset(path, skip_warmup)
66
    print(f"Unknown dataset implementation: {impl}")
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    return None


def dataset_exists(path, impl):
    if impl == 'mmap':
        return MMapIndexedDataset.exists(path)
    else:
        return IndexedDataset.exists(path)


def read_longs(f, n):
    a = np.empty(n, dtype=np.int64)
    f.readinto(a)
    return a


def write_longs(f, a):
    f.write(np.array(a, dtype=np.int64))


dtypes = {
    1: np.uint8,
    2: np.int8,
    3: np.int16,
    4: np.int32,
    5: np.int64,
    6: np.float,
    7: np.double,
    8: np.uint16
}


def code(dtype):
    for k in dtypes.keys():
        if dtypes[k] == dtype:
            return k
    raise ValueError(dtype)


def index_file_path(prefix_path):
    return prefix_path + '.idx'


def data_file_path(prefix_path):
    return prefix_path + '.bin'

Neel Kant's avatar
Neel Kant committed
113

114
115
116
117
def create_doc_idx(sizes):
    doc_idx = [0]
    for i, s in enumerate(sizes):
        if s == 0:
Neel Kant's avatar
Neel Kant committed
118
            doc_idx.append(i + 1)
119
    return doc_idx
120

Neel Kant's avatar
Neel Kant committed
121

122
123
124
125
class IndexedDataset(torch.utils.data.Dataset):
    """Loader for IndexedDataset"""
    _HDR_MAGIC = b'TNTIDX\x00\x00'

126
    def __init__(self, path):
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        super().__init__()
        self.path = path
        self.data_file = None
        self.read_index(path)

    def read_index(self, path):
        with open(index_file_path(path), 'rb') as f:
            magic = f.read(8)
            assert magic == self._HDR_MAGIC, (
                'Index file doesn\'t match expected format. '
                'Make sure that --dataset-impl is configured properly.'
            )
            version = f.read(8)
            assert struct.unpack('<Q', version) == (1,)
            code, self.element_size = struct.unpack('<QQ', f.read(16))
            self.dtype = dtypes[code]
            self._len, self.s = struct.unpack('<QQ', f.read(16))
144
            self.doc_count = struct.unpack('<Q', f.read(8))
145
146
147
            self.dim_offsets = read_longs(f, self._len + 1)
            self.data_offsets = read_longs(f, self._len + 1)
            self.sizes = read_longs(f, self.s)
148
            self.doc_idx = read_longs(f, self.doc_count)
149
150
151
152
153
154
155
156
157
158
159
160

    def read_data(self, path):
        self.data_file = open(data_file_path(path), 'rb', buffering=0)

    def check_index(self, i):
        if i < 0 or i >= self._len:
            raise IndexError('index out of range')

    def __del__(self):
        if self.data_file:
            self.data_file.close()

Neel Kant's avatar
Neel Kant committed
161
    # @lru_cache(maxsize=8)
162
    def __getitem__(self, idx):
163
164
        if not self.data_file:
            self.read_data(self.path)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        if isinstance(idx, int):
            i = idx
            self.check_index(i)
            tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]]
            a = np.empty(tensor_size, dtype=self.dtype)
            self.data_file.seek(self.data_offsets[i] * self.element_size)
            self.data_file.readinto(a)
            return a
        elif isinstance(idx, slice):
            start, stop, step = idx.indices(len(self))
            if step != 1:
                raise ValueError("Slices into indexed_dataset must be contiguous")
            sizes = self.sizes[self.dim_offsets[start]:self.dim_offsets[stop]]
            size = sum(sizes)
            a = np.empty(size, dtype=self.dtype)
            self.data_file.seek(self.data_offsets[start] * self.element_size)
            self.data_file.readinto(a)
            offsets = list(accumulate(sizes))
            sents = np.split(a, offsets[:-1])
            return sents
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

    def __len__(self):
        return self._len

    def num_tokens(self, index):
        return self.sizes[index]

    def size(self, index):
        return self.sizes[index]

    @staticmethod
    def exists(path):
        return (
            os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
        )

    @property
    def supports_prefetch(self):
        return False  # avoid prefetching to save memory


class IndexedCachedDataset(IndexedDataset):

208
209
    def __init__(self, path):
        super().__init__(path)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        self.cache = None
        self.cache_index = {}

    @property
    def supports_prefetch(self):
        return True

    def prefetch(self, indices):
        if all(i in self.cache_index for i in indices):
            return
        if not self.data_file:
            self.read_data(self.path)
        indices = sorted(set(indices))
        total_size = 0
        for i in indices:
            total_size += self.data_offsets[i + 1] - self.data_offsets[i]
        self.cache = np.empty(total_size, dtype=self.dtype)
        ptx = 0
        self.cache_index.clear()
        for i in indices:
            self.cache_index[i] = ptx
            size = self.data_offsets[i + 1] - self.data_offsets[i]
            a = self.cache[ptx: ptx + size]
            self.data_file.seek(self.data_offsets[i] * self.element_size)
            self.data_file.readinto(a)
            ptx += size
        if self.data_file:
            # close and delete data file after prefetch so we can pickle
            self.data_file.close()
            self.data_file = None

Neel Kant's avatar
Neel Kant committed
241
    # @lru_cache(maxsize=8)
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    def __getitem__(self, idx):
        if isinstance(idx, int):
            i = idx
            self.check_index(i)
            tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]]
            a = np.empty(tensor_size, dtype=self.dtype)
            ptx = self.cache_index[i]
            np.copyto(a, self.cache[ptx: ptx + a.size])
            return a
        elif isinstance(idx, slice):
            # Hack just to make this work, can optimizer later if necessary
            sents = []
            for i in range(*idx.indices(len(self))):
                sents.append(self[i])
            return sents
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276


class IndexedDatasetBuilder(object):
    element_sizes = {
        np.uint8: 1,
        np.int8: 1,
        np.int16: 2,
        np.int32: 4,
        np.int64: 8,
        np.float: 4,
        np.double: 8
    }

    def __init__(self, out_file, dtype=np.int32):
        self.out_file = open(out_file, 'wb')
        self.dtype = dtype
        self.data_offsets = [0]
        self.dim_offsets = [0]
        self.sizes = []
        self.element_size = self.element_sizes[self.dtype]
277
        self.doc_idx = [0]
278
279

    def add_item(self, tensor):
280
        bytes = self.out_file.write(np.array(tensor.numpy(), dtype=self.dtype))
281
282
283
284
285
        self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
        for s in tensor.size():
            self.sizes.append(s)
        self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size()))

286
287
288
    def end_document(self):
        self.doc_idx.append(len(self.sizes))

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    def merge_file_(self, another_file):
        index = IndexedDataset(another_file)
        assert index.dtype == self.dtype

        begin = self.data_offsets[-1]
        for offset in index.data_offsets[1:]:
            self.data_offsets.append(begin + offset)
        self.sizes.extend(index.sizes)
        begin = self.dim_offsets[-1]
        for dim_offset in index.dim_offsets[1:]:
            self.dim_offsets.append(begin + dim_offset)

        with open(data_file_path(another_file), 'rb') as f:
            while True:
                data = f.read(1024)
                if data:
                    self.out_file.write(data)
                else:
                    break

    def finalize(self, index_file):
        self.out_file.close()
        index = open(index_file, 'wb')
        index.write(b'TNTIDX\x00\x00')
        index.write(struct.pack('<Q', 1))
        index.write(struct.pack('<QQ', code(self.dtype), self.element_size))
        index.write(struct.pack('<QQ', len(self.data_offsets) - 1, len(self.sizes)))
316
        index.write(struct.pack('<Q', len(self.doc_idx)))
317
318
319
        write_longs(index, self.dim_offsets)
        write_longs(index, self.data_offsets)
        write_longs(index, self.sizes)
320
        write_longs(index, self.doc_idx)
321
322
323
324
325
        index.close()


def _warmup_mmap_file(path):
    with open(path, 'rb') as stream:
326
        while stream.read(100 * 1024 * 1024):
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
            pass


class MMapIndexedDataset(torch.utils.data.Dataset):
    class Index(object):
        _HDR_MAGIC = b'MMIDIDX\x00\x00'

        @classmethod
        def writer(cls, path, dtype):
            class _Writer(object):
                def __enter__(self):
                    self._file = open(path, 'wb')

                    self._file.write(cls._HDR_MAGIC)
                    self._file.write(struct.pack('<Q', 1))
                    self._file.write(struct.pack('<B', code(dtype)))

                    return self

                @staticmethod
                def _get_pointers(sizes):
                    dtype_size = dtype().itemsize
                    address = 0
                    pointers = []

                    for size in sizes:
                        pointers.append(address)
                        address += size * dtype_size

                    return pointers

358
                def write(self, sizes, doc_idx):
359
360
361
                    pointers = self._get_pointers(sizes)

                    self._file.write(struct.pack('<Q', len(sizes)))
362
                    self._file.write(struct.pack('<Q', len(doc_idx)))
363
364
365
366
367
368
369
370
371

                    sizes = np.array(sizes, dtype=np.int32)
                    self._file.write(sizes.tobytes(order='C'))
                    del sizes

                    pointers = np.array(pointers, dtype=np.int64)
                    self._file.write(pointers.tobytes(order='C'))
                    del pointers

372
373
374
                    doc_idx = np.array(doc_idx, dtype=np.int64)
                    self._file.write(doc_idx.tobytes(order='C'))

375
376
377
378
379
                def __exit__(self, exc_type, exc_val, exc_tb):
                    self._file.close()

            return _Writer()

380
        def __init__(self, path, skip_warmup=False):
381
382
383
384
385
386
387
388
389
390
391
392
393
394
            with open(path, 'rb') as stream:
                magic_test = stream.read(9)
                assert self._HDR_MAGIC == magic_test, (
                    'Index file doesn\'t match expected format. '
                    'Make sure that --dataset-impl is configured properly.'
                )
                version = struct.unpack('<Q', stream.read(8))
                assert (1,) == version

                dtype_code, = struct.unpack('<B', stream.read(1))
                self._dtype = dtypes[dtype_code]
                self._dtype_size = self._dtype().itemsize

                self._len = struct.unpack('<Q', stream.read(8))[0]
395
                self._doc_count = struct.unpack('<Q', stream.read(8))[0]
396
397
                offset = stream.tell()

398
            if not skip_warmup:
399
                print_rank_0("    warming up index mmap file...")
400
                _warmup_mmap_file(path)
401
402
403

            self._bin_buffer_mmap = np.memmap(path, mode='r', order='C')
            self._bin_buffer = memoryview(self._bin_buffer_mmap)
404
            print_rank_0("    reading sizes...")
Neel Kant's avatar
Neel Kant committed
405
406
407
408
409
            self._sizes = np.frombuffer(
                self._bin_buffer,
                dtype=np.int32,
                count=self._len,
                offset=offset)
410
            print_rank_0("    reading pointers...")
411
412
            self._pointers = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._len,
                                           offset=offset + self._sizes.nbytes)
413
            print_rank_0("    reading document index...")
414
415
            self._doc_idx = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._doc_count,
                                          offset=offset + self._sizes.nbytes + self._pointers.nbytes)
Neel Kant's avatar
Neel Kant committed
416

417
418
419
420
421
422
423
424
425
426
427
428
        def __del__(self):
            self._bin_buffer_mmap._mmap.close()
            del self._bin_buffer_mmap

        @property
        def dtype(self):
            return self._dtype

        @property
        def sizes(self):
            return self._sizes

429
430
431
432
        @property
        def doc_idx(self):
            return self._doc_idx

433
434
435
436
437
438
439
        @lru_cache(maxsize=8)
        def __getitem__(self, i):
            return self._pointers[i], self._sizes[i]

        def __len__(self):
            return self._len

440
    def __init__(self, path, skip_warmup=False):
441
442
443
444
445
446
        super().__init__()

        self._path = None
        self._index = None
        self._bin_buffer = None

447
        self._do_init(path, skip_warmup)
448
449
450
451
452
453
454

    def __getstate__(self):
        return self._path

    def __setstate__(self, state):
        self._do_init(state)

455
    def _do_init(self, path, skip_warmup):
456
        self._path = path
457
        self._index = self.Index(index_file_path(self._path), skip_warmup)
458

459
        if not skip_warmup:
460
            print_rank_0("    warming up data mmap file...")
461
            _warmup_mmap_file(data_file_path(self._path))
462
        print_rank_0("    creating numpy buffer of mmap...")
463
        self._bin_buffer_mmap = np.memmap(data_file_path(self._path), mode='r', order='C')
464
        print_rank_0("    creating memory view of numpy buffer...")
465
466
467
468
469
470
471
472
473
474
        self._bin_buffer = memoryview(self._bin_buffer_mmap)

    def __del__(self):
        self._bin_buffer_mmap._mmap.close()
        del self._bin_buffer_mmap
        del self._index

    def __len__(self):
        return len(self._index)

Neel Kant's avatar
Neel Kant committed
475
    # @lru_cache(maxsize=8)
476
477
478
    def __getitem__(self, idx):
        if isinstance(idx, int):
            ptr, size = self._index[idx]
479
480
            np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype,
                                     count=size, offset=ptr)
481
            return np_array
482
483
484
485
486
487
488
489
        elif isinstance(idx, slice):
            start, stop, step = idx.indices(len(self))
            if step != 1:
                raise ValueError("Slices into indexed_dataset must be contiguous")
            ptr = self._index._pointers[start]
            sizes = self._index._sizes[idx]
            offsets = list(accumulate(sizes))
            total_size = sum(sizes)
490
491
            np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype,
                                     count=total_size, offset=ptr)
492
493
            sents = np.split(np_array, offsets[:-1])
            return sents
494

495
    def get(self, idx, offset=0, length=None):
496
497
498
499
500
        """ Retrieves a single item from the dataset with the option to only
        return a portion of the item.

        get(idx) is the same as [idx] but get() does not support slicing.
        """
501
502
503
504
505
506
507
508
        ptr, size = self._index[idx]
        if length is None:
            length = size - offset
        ptr += offset * np.dtype(self._index.dtype).itemsize
        np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype,
                                 count=length, offset=ptr)
        return np_array

509
510
511
512
    @property
    def sizes(self):
        return self._index.sizes

513
514
515
516
    @property
    def doc_idx(self):
        return self._index.doc_idx

517
518
519
520
521
522
    def get_doc_idx(self):
        return self._index._doc_idx

    def set_doc_idx(self, doc_idx_):
        self._index._doc_idx = doc_idx_

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    @property
    def supports_prefetch(self):
        return False

    @staticmethod
    def exists(path):
        return (
            os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
        )


class MMapIndexedDatasetBuilder(object):
    def __init__(self, out_file, dtype=np.int64):
        self._data_file = open(out_file, 'wb')
        self._dtype = dtype
        self._sizes = []
539
        self._doc_idx = [0]
540
541
542
543
544
545

    def add_item(self, tensor):
        np_array = np.array(tensor.numpy(), dtype=self._dtype)
        self._data_file.write(np_array.tobytes(order='C'))
        self._sizes.append(np_array.size)

546
547
548
    def end_document(self):
        self._doc_idx.append(len(self._sizes))

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    def merge_file_(self, another_file):
        # Concatenate index
        index = MMapIndexedDataset.Index(index_file_path(another_file))
        assert index.dtype == self._dtype

        for size in index.sizes:
            self._sizes.append(size)

        # Concatenate data
        with open(data_file_path(another_file), 'rb') as f:
            shutil.copyfileobj(f, self._data_file)

    def finalize(self, index_file):
        self._data_file.close()

        with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
565
            index.write(self._sizes, self._doc_idx)