arguments.py 107 KB
Newer Older
liangjing's avatar
liangjing committed
1
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
Raul Puri's avatar
Raul Puri committed
2

Mohammad's avatar
Mohammad committed
3
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
4
5

import argparse
liangjing's avatar
v1  
liangjing committed
6
import dataclasses
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
7
import json
liangjing's avatar
liangjing committed
8
import logging
Raul Puri's avatar
Raul Puri committed
9
import os
10
import torch
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
11
12
import types

liangjing's avatar
v1  
liangjing committed
13
import torch.nn.functional as F
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
14

liangjing's avatar
liangjing committed
15
16
17
18
19
from megatron.core.dist_checkpointing.validation import StrictHandling
from megatron.core.models.retro.utils import (
    get_config_path as get_retro_config_path,
    get_gpt_data_dir as get_retro_data_dir,
)
liangjing's avatar
v1  
liangjing committed
20
from megatron.core.transformer import TransformerConfig
liangjing's avatar
liangjing committed
21
22
23
from megatron.training.activations import squared_relu
from megatron.training.utils import update_use_dist_ckpt

Raul Puri's avatar
Raul Puri committed
24

25
def parse_args(extra_args_provider=None, ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
26
    """Parse all arguments."""
27
28
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
29

Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
42
    parser = _add_biencoder_args(parser)
43
    parser = _add_vision_args(parser)
liangjing's avatar
liangjing committed
44
    parser = _add_moe_args(parser)
45
    parser = _add_logging_args(parser)
liangjing's avatar
liangjing committed
46
    parser = _add_straggler_detector_args(parser)
mshoeybi's avatar
mshoeybi committed
47
    parser = _add_inference_args(parser)
48
    parser = _add_transformer_engine_args(parser)
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
49
    parser = _add_retro_args(parser)
liangjing's avatar
liangjing committed
50
51
52
53
    parser = _add_experimental_args(parser)
    parser = _add_one_logger_args(parser)
    parser = _add_ft_package_args(parser)
    parser = _add_config_logger_args(parser)
Mohammad's avatar
Mohammad committed
54
55
56
57

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
58

Mohammad's avatar
Mohammad committed
59
    # Parse.
60
61
62
63
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
64

liangjing's avatar
liangjing committed
65
66
67
68
69
70
71
72
    # Experimental yaml
    if args.yaml_cfg is not None:
        from .yaml_arguments import load_yaml
        assert args.yaml_cfg and not args.use_legacy_models, \
            "Yaml config is not supported with legacy models."
        args = load_yaml(args.yaml_cfg)


73
    # Args from environment
unknown's avatar
unknown committed
74
75
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
liangjing's avatar
v1  
liangjing committed
76

77
78
    return args

liangjing's avatar
liangjing committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

def load_retro_config(retro_project_dir):
    '''Load Retro's config.json.'''

    # Retro config path.
    retro_config_path = get_retro_config_path(retro_project_dir)
    assert os.path.exists(retro_config_path), \
        "Retro project dir missing config.json."

    # Load retro config.
    with open(retro_config_path) as f:
        retro_config = types.SimpleNamespace(**json.load(f))

    return retro_config


def load_retro_args(args):
    """Load predefined args from Retro config (if applicable).

    When using Retro (or GPT for comparison purposes), data arguments are
    overridden by the saved config.json within the Retro project directory. This
    is to ensure that the data used for pretraining is consistent with the data
    that was preprocessed using the Retro preprocessing pipeline (see
    `tools/retro/preprocess_data.py`).
    """

    # Return if no project directory is specified.
    if args.retro_project_dir is None:
        return

    # Load retro config.
    retro_config = load_retro_config(args.retro_project_dir)

    # Retro data path is relative to project dir (via hard or soft links).
    data_dir = get_retro_data_dir(args.retro_project_dir)
    data_path = list(retro_config.retro_gpt_data_path)
    if len(data_path) % 2 == 0:
        for i in range(len(data_path) - 1, -1, -2):
            data_path[i] = os.path.join(data_dir, data_path[i])
    else:
        assert len(data_path) == 1
        data_path[0] = os.path.join(data_dir, data_path[0])

    # Update args.
    args.data_cache_path = retro_config.retro_gpt_data_cache_path
    args.data_path = data_path if args.data_path is None else args.data_path
    args.eval_interval = retro_config.retro_gpt_eval_interval
    args.eval_iters = retro_config.retro_gpt_eval_iters
    args.global_batch_size = retro_config.retro_gpt_global_batch_size
    args.max_position_embeddings = retro_config.retro_gpt_seq_length
    args.merge_file = os.path.join(
        args.retro_project_dir,
        retro_config.retro_gpt_merge_file,
    ) if retro_config.retro_gpt_merge_file is not None else None
    args.seed = retro_config.retro_gpt_seed
    args.seq_length = retro_config.retro_gpt_seq_length
    args.tokenizer_model = os.path.join(
        args.retro_project_dir,
        retro_config.retro_gpt_tokenizer_model,
    ) if retro_config.retro_gpt_tokenizer_model is not None else None
    args.tokenizer_type = retro_config.retro_gpt_tokenizer_type
    args.train_samples = retro_config.retro_gpt_train_samples
    args.vocab_file = os.path.join(
        args.retro_project_dir,
        retro_config.retro_gpt_vocab_file,
    ) if retro_config.retro_gpt_vocab_file is not None else None

    # Retro-specific args.
    args.retro_block_size = retro_config.retro_block_size
    args.retro_chunk_length = retro_config.retro_gpt_chunk_length
    args.retro_neighbor_dirs = retro_config.retro_neighbor_dirs
    args.retro_split_preprocessing = retro_config.retro_gpt_split
    args.retro_bert_tokenizer_type = retro_config.retro_bert_tokenizer_type
    args.retro_bert_vocab_file = retro_config.retro_bert_vocab_file


155
def validate_args(args, defaults={}):
liangjing's avatar
liangjing committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

    # Temporary
    assert args.non_persistent_ckpt_type in ['global', None], \
        'Currently only global checkpoints are supported'

    # Load saved args from Retro (if applicable).
    load_retro_args(args)

    # Set args.use_dist_ckpt from args.ckpt_format.
    update_use_dist_ckpt(args)

    if args.encoder_tensor_model_parallel_size > 0:
        assert args.encoder_pipeline_model_parallel_size > 0, "encoder_pipeline_model_parallel_size must be defined."
        assert args.num_attention_heads % args.encoder_tensor_model_parallel_size == 0
        assert args.encoder_tensor_model_parallel_size <= args.tensor_model_parallel_size, "We do not support encoders with more TP than the decoder."

    if args.encoder_pipeline_model_parallel_size > 0 and args.encoder_tensor_model_parallel_size == 0:
        args.encoder_tensor_model_parallel_size = args.tensor_model_parallel_size

    encoder_model_size = args.encoder_tensor_model_parallel_size * args.encoder_pipeline_model_parallel_size * args.context_parallel_size
    decoder_model_size = args.tensor_model_parallel_size * args.pipeline_model_parallel_size * args.context_parallel_size
    total_model_size = encoder_model_size + decoder_model_size

    # Total model size.
    assert args.world_size % total_model_size == 0, (
        f"world size ({args.world_size}) is not divisible by total_model_size ({encoder_model_size=} + {decoder_model_size=})"
    )

mohammad's avatar
mohammad committed
184
    # Pipeline model parallel size.
185
186
    args.transformer_pipeline_model_parallel_size = (
        args.pipeline_model_parallel_size - 1
187
        if args.standalone_embedding_stage else
188
189
        args.pipeline_model_parallel_size
    )
liangjing's avatar
liangjing committed
190
191
192

    args.data_parallel_size = args.world_size // total_model_size

mohammad's avatar
mohammad committed
193
    # Checks.
Mohammad's avatar
Mohammad committed
194
    if args.rank == 0:
liangjing's avatar
liangjing committed
195
196
        print('using world size: {}, data-parallel size: {}, '
              'context-parallel size: {}, '
mohammad's avatar
mohammad committed
197
              'tensor-model-parallel size: {}, '
liangjing's avatar
liangjing committed
198
199
200
              'encoder-tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {}, '
              'encoder-pipeline-model-parallel size: {}'.format(
mohammad's avatar
mohammad committed
201
                  args.world_size, args.data_parallel_size,
liangjing's avatar
liangjing committed
202
                  args.context_parallel_size,
mohammad's avatar
mohammad committed
203
                  args.tensor_model_parallel_size,
liangjing's avatar
liangjing committed
204
205
206
207
208
209
210
211
212
213
214
215
                  args.encoder_tensor_model_parallel_size,
                  args.pipeline_model_parallel_size,
                  args.encoder_pipeline_model_parallel_size), flush=True)

    # backwards compatibility.
    if args.pipeline_model_parallel_split_rank is not None:
        args.encoder_pipeline_model_parallel_size = args.pipeline_model_parallel_split_rank
        args.pipeline_model_parallel_size -= args.encoder_pipeline_model_parallel_size
        assert args.pipeline_model_parallel_size > 0

    if args.tp_comm_overlap:
        assert args.sequence_parallel == True, 'Tensor parallel communication/GEMM overlap can happen only when sequence parallelism is enabled'
mohammad's avatar
mohammad committed
216

217
218
219
220
221
222
223
224
225
226
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
Vijay Korthikanti's avatar
Vijay Korthikanti committed
227

228
    if args.checkpoint_activations:
slym's avatar
slym committed
229
        if args.rank == 0:
liangjing's avatar
v1  
liangjing committed
230
231
232
            print('--checkpoint-activations is no longer valid, use --recompute-activations, '
                  'or, for more control, --recompute-granularity and --recompute-method.')
        exit()
233
    del args.checkpoint_activations
234

Vijay Korthikanti's avatar
Vijay Korthikanti committed
235
236
237
238
    if args.recompute_activations:
        args.recompute_granularity = 'selective'
    del args.recompute_activations

Jared Casper's avatar
Jared Casper committed
239
240
241
242
243
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
liangjing's avatar
v1  
liangjing committed
244
        if getattr(args, key, None) is not None:
Jared Casper's avatar
Jared Casper committed
245
246
247
248
249
250
251
252
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

liangjing's avatar
liangjing committed
253
254
255
256
257
258
259
    if args.data_path is not None and args.split is None:
        legacy_default_split_value = '969, 30, 1'
        if args.rank == 0:
            print('WARNING: Please specify --split when using --data-path. Using legacy default value '
                  f'of "{legacy_default_split_value}"')
        args.split = legacy_default_split_value

mohammad's avatar
mohammad committed
260
261
262
263
264
265
266
267
268
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
269
    if args.num_layers_per_virtual_pipeline_stage is not None:
liangjing's avatar
liangjing committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        if args.overlap_p2p_comm:
            assert args.pipeline_model_parallel_size > 1, \
                'when interleaved schedule is used, pipeline-model-parallel size '\
                'should be greater than 1'
        else:
            assert args.pipeline_model_parallel_size > 2, \
                'when interleaved schedule is used and p2p communication overlap is disabled, '\
                'pipeline-model-parallel size should be greater than 2 to avoid having multiple '\
                'p2p sends and recvs between same 2 ranks per communication batch'
        assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
            'number of layers should be divisible by the pipeline parallel size'
        num_layers_per_pipeline_stage = args.num_layers // args.transformer_pipeline_model_parallel_size
        assert num_layers_per_pipeline_stage % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers per pipeline stage must be divisible number of layers per virtual pipeline stage'
        args.virtual_pipeline_model_parallel_size = num_layers_per_pipeline_stage // \
285
286
287
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
liangjing's avatar
liangjing committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        # Overlap P2P communication is disabled if not using the interleaved schedule.
        args.overlap_p2p_comm = False
        args.align_param_gather = False
        if args.rank == 0:
            print('WARNING: Setting args.overlap_p2p_comm and args.align_param_gather to False '
                  'since non-interleaved schedule does not support overlapping p2p communication '
                  'and aligned param AG')

    if args.overlap_param_gather:
        assert args.use_distributed_optimizer, \
            '--overlap-param-gather only supported with distributed optimizer'
        assert args.overlap_grad_reduce, \
            'Must use --overlap-param-gather with --overlap-grad-reduce'
        assert not args.use_legacy_models, \
            '--overlap-param-gather only supported with MCore models'

    if args.overlap_param_gather_with_optimizer_step:
        assert args.use_distributed_optimizer, \
            '--overlap-param-gather-with-optimizer-step only supported with distributed optimizer'
        assert args.overlap_param_gather, \
            'Must use --overlap-param-gather-with-optimizer-step with --overlap-param-gather'
        assert args.virtual_pipeline_model_parallel_size is not None, \
            '--overlap-param-gather-with-optimizer-step only supported with interleaved pipeline parallelism'
        assert not args.use_dist_ckpt, \
            '--overlap-param-gather-with-optimizer-step not supported with distributed checkpointing yet'

    if args.fp8_param_gather:
        assert args.use_distributed_optimizer, \
            '--fp8-param-gather only supported with distributed optimizer'
Mohammad's avatar
Mohammad committed
317

318
319
320
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
321
        assert not args.bf16
322
        args.params_dtype = torch.half
liangjing's avatar
liangjing committed
323
324
325
326
327
328
329
        # Turn off checking for NaNs in loss and grads if using dynamic loss scaling,
        # where NaNs in grads / loss are signal to the loss scaler.
        if not args.loss_scale:
            args.check_for_nan_in_loss_and_grad = False
            if args.rank == 0:
                print('WARNING: Setting args.check_for_nan_in_loss_and_grad to False since '
                      'dynamic loss scaling is being used')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
330
331
332
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
333
334
335
336
337
338
339
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
340

341
342
343
344
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

345
346
347
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

liangjing's avatar
liangjing committed
348
349
350
    # data
    assert args.num_dataset_builder_threads > 0

351
352
    # Consumed tokens.
    args.consumed_train_samples = 0
liangjing's avatar
liangjing committed
353
    args.skipped_train_samples = 0
354
    args.consumed_valid_samples = 0
355

356
357
358
359
360
361
362
    # Support for variable sequence lengths across batches/microbatches.
    # set it if the dataloader supports generation of variable sequence lengths
    # across batches/microbatches. Due to additional communication overhead
    # during pipeline parallelism, it should not be set if sequence length
    # is constant during training.
    args.variable_seq_lengths = False

363
364
365
366
367
368
369
370
371
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
372
            'expected iteration-based learning rate warmup'
373
374
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
375
        if args.lr_warmup_fraction is not None:
376
            assert args.lr_warmup_iters == 0, \
377
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
378
379
380
381
382
383
384
385
386
387
388

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
389
        if args.lr_warmup_fraction is not None:
390
            assert args.lr_warmup_samples == 0, \
391
392
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
393

394
    if args.num_layers is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
395
396
        assert args.encoder_num_layers is None, \
            'cannot have both num-layers and encoder-num-layers specified'
397
398
        args.encoder_num_layers = args.num_layers
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
399
400
        assert args.encoder_num_layers is not None, \
            'either num-layers or encoder-num-layers should be specified'
401
402
        args.num_layers = args.encoder_num_layers

403
    # Check required arguments.
Mohammad's avatar
Mohammad committed
404
405
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
406
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
407
        _check_arg_is_not_none(args, req_arg)
408

Mohammad's avatar
Mohammad committed
409
    # Checks.
410
    if args.ffn_hidden_size is None:
liangjing's avatar
liangjing committed
411
412
413
414
415
416
417
418
419
        if args.swiglu:
            # reduce the dimnesion for MLP since projections happens on
            # two linear layers. this keeps the number of paramters in
            # the same ballpark as the counterpart with 4*h size
            # we keep it a multiple of 64, which means the actual tensor size
            # will be a multiple of 64 / tp_size
            args.ffn_hidden_size = int((4 * args.hidden_size * 2 / 3) / 64) * 64
        else:
            args.ffn_hidden_size = 4 * args.hidden_size
420

421
422
423
424
    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

liangjing's avatar
liangjing committed
425
426
427
428
429
    if args.seq_length is not None and args.context_parallel_size > 1:
        assert args.seq_length % (args.context_parallel_size * 2) == 0, \
            'seq-length should be a multiple of 2 * context-parallel-size ' \
            'if context-parallel-size > 1.'

430
431
432
433
434
435
    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
436

Mohammad's avatar
Mohammad committed
437
438
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
439
440
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
441
442
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
443
444
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
445
446
447
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
448
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
449
450
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
451

liangjing's avatar
liangjing committed
452
453
454
455
456
    if args.moe_grouped_gemm:
        assert args.bf16, 'Currently GroupedGEMM for MoE only supports bf16 dtype.'
        dc = torch.cuda.get_device_capability()
        assert dc[0] >= 8, "Unsupported compute capability for GroupedGEMM kernels."

Vijay Korthikanti's avatar
Vijay Korthikanti committed
457
458
459
460
461
    if args.weight_decay_incr_style == 'constant':
        assert args.start_weight_decay is None
        assert args.end_weight_decay is None
        args.start_weight_decay = args.weight_decay
        args.end_weight_decay = args.weight_decay
Vijay Korthikanti's avatar
Vijay Korthikanti committed
462
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
463
464
        assert args.start_weight_decay is not None
        assert args.end_weight_decay is not None
465

Sangkug Lym's avatar
Sangkug Lym committed
466
467
468
469
470
471
472
473
474
475
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

Vijay Korthikanti's avatar
Vijay Korthikanti committed
476
    # Activation recomputing.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
477
    if args.distribute_saved_activations:
mshoeybi's avatar
mshoeybi committed
478
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
479
            'recomputed activations only across tensor model ' \
mshoeybi's avatar
mshoeybi committed
480
            'parallel groups'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
481
482
483
484
485
486
        assert args.recompute_granularity == 'full', \
            'distributed recompute activations is only '\
            'application to full recompute granularity'
        assert args.recompute_method is not None, \
            'for distributed recompute activations to work you '\
            'need to use a recompute method '
liangjing's avatar
v1  
liangjing committed
487
        assert (TORCH_MAJOR, TORCH_MINOR) >= (1, 10), \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
488
            'distributed recompute activations are supported for pytorch ' \
489
490
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
491

Vijay Korthikanti's avatar
Vijay Korthikanti committed
492
493
494
495
    if args.recompute_granularity == 'selective':
        assert args.recompute_method is None, \
            'recompute method is not yet supported for ' \
            'selective recomputing granularity'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
496
497
498
499
500
501
502

    # disable sequence parallelism when tp=1
    # to avoid change in numerics when
    # sequence_parallelism is enabled.
    if args.tensor_model_parallel_size == 1:
        args.sequence_parallel = False

Vijay Korthikanti's avatar
Vijay Korthikanti committed
503
    # disable async_tensor_model_parallel_allreduce when
Vijay Korthikanti's avatar
Vijay Korthikanti committed
504
    # model parallel memory optimization is enabled
Vijay Korthikanti's avatar
Vijay Korthikanti committed
505
506
    if args.sequence_parallel:
        args.async_tensor_model_parallel_allreduce = False
Vijay Korthikanti's avatar
Vijay Korthikanti committed
507

508
509
510
511
512
513
514
515
516
517
    if os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') != "1":
        if args.sequence_parallel:
            raise RuntimeError(
                "Using sequence parallelism requires setting the environment variable "
                "CUDA_DEVICE_MAX_CONNECTIONS to 1")
        if args.async_tensor_model_parallel_allreduce:
            raise RuntimeError(
                "Using async gradient all reduce requires setting the environment "
                "variable CUDA_DEVICE_MAX_CONNECTIONS to 1")

518
519
520
521
    # Disable bias gelu fusion if we are disabling bias altogether
    if not args.add_bias_linear:
        args.bias_gelu_fusion = False

liangjing's avatar
v1  
liangjing committed
522
523
524
    # Retro checks.
    if args.retro_add_retriever:

liangjing's avatar
liangjing committed
525
526
527
528
        # Train samples should be auto-loaded.
        assert args.train_samples is not None, \
            "args.train_samples should be auto-loaded from the retro config."

liangjing's avatar
v1  
liangjing committed
529
530
531
532
533
534
535
536
        # Sequence parallelism unsupported.
        assert not args.sequence_parallel, \
            "retro currently does not support sequence parallelism."

        # Pipeline parallelism unsupported.
        assert args.pipeline_model_parallel_size == 1, \
            "retro currently does not support pipeline parallelism."

liangjing's avatar
liangjing committed
537
538
539
    if args.decoupled_lr is not None or args.decoupled_min_lr is not None:
        assert not args.use_legacy_models, \
            '--decoupled-lr and --decoupled-min-lr is not supported in legacy models.'
liangjing's avatar
v1  
liangjing committed
540
541
542
543

    # Legacy RoPE arguments
    if args.use_rotary_position_embeddings:
        args.position_embedding_type = 'rope'
liangjing's avatar
liangjing committed
544
545
546
547
    if args.rotary_interleaved and args.apply_rope_fusion:
        raise RuntimeError('--rotary-interleaved does not work with rope_fusion.')
    if args.rotary_interleaved and args.use_legacy_models:
        raise RuntimeError('--rotary-interleaved is not supported in legacy models.')
liangjing's avatar
v1  
liangjing committed
548
549
550
551
552

    # Would just need to add 'NoPE' as a position_embedding_type to support this, but for now
    # don't allow it to keep things simple
    if not args.add_position_embedding and args.position_embedding_type != 'rope':
        raise RuntimeError('--no-position-embedding is deprecated, use --position-embedding-type')
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
553

liangjing's avatar
liangjing committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    # MoE Spec check
    if args.num_experts == 0:
        args.num_experts = None
    if args.num_experts is not None:
        assert args.spec is None, "Model Spec must be None when using MoEs"

    # Context parallel
    if args.context_parallel_size > 1:
        assert not args.use_legacy_models, "Context parallelism is not supported in legacy models."

    # Expert parallelism check
    if args.expert_model_parallel_size  > 1:
        assert args.num_experts is not None, "num_experts must be non None to use expert model parallelism"
        assert args.num_experts % args.expert_model_parallel_size == 0, \
            "Number of experts should be a multiple of expert model parallel_size."
        assert not args.fp16, \
            "Expert parallelism is not supported with fp16 training."

    # Distributed checkpointing checks
unknown's avatar
unknown committed
573
    # print(f"args.use_dist_ckpt: {args.use_dist_ckpt}")
liangjing's avatar
liangjing committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
    if args.use_dist_ckpt and args.use_legacy_models:
        raise RuntimeError('--use-dist-ckpt is not supported in legacy models.')

    # Data blend checks
    assert args.mock_data + \
           bool(args.data_path) + \
           any([args.train_data_path, args.valid_data_path, args.test_data_path]) \
           <= 1, "A single data source must be provided in training mode, else None"

    if args.use_tp_pp_dp_mapping:
        assert args.context_parallel_size * args.expert_model_parallel_size <= 1, \
            "context_parallel and expert_model_parallel can't be used with tp-pp-dp mapping."

    # Deterministic mode
    if args.deterministic_mode:
        assert not args.use_flash_attn, "Flash attention can not be used in deterministic mode."
        assert not args.cross_entropy_loss_fusion, "Cross Entropy Fusion is currently not deterministic."

        all_reduce_choices = ["Tree", "Ring", "CollnetDirect", "CollnetChain", "^NVLS"]
        assert os.getenv("NCCL_ALGO", -1) != -1 and os.getenv("NCCL_ALGO") in all_reduce_choices, \
            f"NCCL_ALGO must be one of {all_reduce_choices}."

        torch.use_deterministic_algorithms(True)

    # Update the printed args to reflect that `apply_query_key_layer_scaling` also controls `attention_softmax_in_fp32`
    if args.apply_query_key_layer_scaling:
        args.attention_softmax_in_fp32 = True

    # Checkpointing
    if args.ckpt_fully_parallel_save_deprecated and args.rank == 0:
        print('--ckpt-fully-parallel-save flag is deprecated and has no effect.'
              ' Use --no-ckpt-fully-parallel-save to disable parallel save.')
    if (
        args.use_dist_ckpt
        and not args.ckpt_fully_parallel_save
        and args.use_distributed_optimizer
        and args.rank == 0
    ):
        print('Warning: With non-parallel ckpt save and DistributedOptimizer,'
              ' it will be impossible to resume training with different parallelism.'
              ' Consider removing flag --no-ckpt-fully-parallel-save.')
    if args.use_dist_ckpt_deprecated and args.rank == 0:
        print('--use-dist-ckpt is deprecated and has no effect.'
              ' Use --ckpt-format to select the checkpoint format.')
    if args.dist_ckpt_format_deprecated and args.rank == 0:
        print('--dist-ckpt-format is deprecated and has no effect.'
              ' Use --ckpt-format to select the checkpoint format.')

    # MoE upcycling check
    if args.moe_use_upcycling:
        assert args.save is not None, "When using upcycling, the --save option must be specified."
        if not args.no_load_optim:
            args.no_load_optim = True
            print('Warning: disabling --no-load-optim for upcycling.')
        if not args.no_load_rng:
            args.no_load_rng = True
            print('Warning: disabling --no-load-rng for upcycling.')

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
632
633
    # Print arguments.
    _print_args("arguments", args)
634

Mohammad's avatar
Mohammad committed
635
    return args
Mohammad's avatar
Mohammad committed
636
637


Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
638
def _print_args(title, args):
Mohammad's avatar
Mohammad committed
639
640
    """Print arguments."""
    if args.rank == 0:
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
641
        print(f'------------------------ {title} ------------------------',
mohammad's avatar
mohammad committed
642
              flush=True)
Mohammad's avatar
Mohammad committed
643
644
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
645
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
646
647
648
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
649
        print(f'-------------------- end of {title} ---------------------',
mohammad's avatar
mohammad committed
650
              flush=True)
Mohammad's avatar
Mohammad committed
651
652


653
654
655
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)

liangjing's avatar
liangjing committed
656
657
658
659
660

def core_transformer_config_from_args(args, config_class=None):

    # Config class.
    config_class = config_class or TransformerConfig
liangjing's avatar
v1  
liangjing committed
661
662
663

    # Translate args to core transformer configuration
    kw_args = {}
liangjing's avatar
liangjing committed
664
    for f in dataclasses.fields(config_class):
liangjing's avatar
v1  
liangjing committed
665
666
667
668
        if hasattr(args, f.name):
            kw_args[f.name] = getattr(args, f.name)
    kw_args['persist_layer_norm'] = not args.no_persist_layer_norm
    kw_args['layernorm_zero_centered_gamma'] = args.apply_layernorm_1p
liangjing's avatar
liangjing committed
669
    kw_args['layernorm_epsilon'] = args.norm_epsilon
liangjing's avatar
v1  
liangjing committed
670
671
672
    kw_args['deallocate_pipeline_outputs'] = True
    kw_args['pipeline_dtype'] = args.params_dtype
    kw_args['batch_p2p_comm'] = not args.overlap_p2p_comm
liangjing's avatar
liangjing committed
673
674
675
676
    kw_args['num_moe_experts'] = args.num_experts
    kw_args['rotary_interleaved'] = args.rotary_interleaved
    kw_args['first_pipeline_num_layers']= args.decoder_first_pipeline_num_layers
    kw_args['last_pipeline_num_layers']= args.decoder_last_pipeline_num_layers
liangjing's avatar
v1  
liangjing committed
677
678
679
    if args.swiglu:
        kw_args['activation_func'] = F.silu
        kw_args['gated_linear_unit'] = True
liangjing's avatar
liangjing committed
680
681
682
683
684
685
        kw_args['bias_activation_fusion'] = args.bias_swiglu_fusion
    else:
        kw_args['bias_activation_fusion'] = args.bias_gelu_fusion
    if args.squared_relu:
        assert not args.swiglu
        kw_args['activation_func'] = squared_relu
liangjing's avatar
v1  
liangjing committed
686
687
688
689
690
691
692
    if args.init_method_xavier_uniform:
        kw_args['init_method'] = torch.nn.init.xavier_uniform_
        kw_args['scaled_init_method'] = torch.nn.init.xavier_uniform_
    if args.group_query_attention:
        kw_args['num_query_groups'] = args.num_query_groups
    else:
        kw_args['num_query_groups'] = None
liangjing's avatar
liangjing committed
693
694
695
696
    kw_args['config_logger_dir'] = args.config_logger_dir

    # Return config.
    return config_class(**kw_args)
liangjing's avatar
v1  
liangjing committed
697

698

699
700
701
def _add_transformer_engine_args(parser):
    group = parser.add_argument_group(title='Transformer-Engine')

liangjing's avatar
v1  
liangjing committed
702
703
704
705
    group.add_argument('--fp8-format', default=None,
                       choices=['e4m3', 'hybrid'],
                       help='Which fp8 format scheme to use for FP8 tensors in the forward and backward pass',
                       dest='fp8')
706
    group.add_argument('--fp8-margin', type=int, default=0,
liangjing's avatar
v1  
liangjing committed
707
708
                       help='Scaling margin for fp8',
                       dest='fp8_margin')
709
    group.add_argument('--fp8-interval', type=int, default=1,
liangjing's avatar
liangjing committed
710
                       help='DEPRECATED. This flag is ignored. Scaling update interval for fp8',
liangjing's avatar
v1  
liangjing committed
711
                       dest='fp8_interval')
712
    group.add_argument('--fp8-amax-history-len', type=int, default=1,
liangjing's avatar
v1  
liangjing committed
713
714
                       help='Number of steps for which amax history is recorded per tensor',
                       dest='fp8_amax_history_len')
715
716
717
718
    group.add_argument('--fp8-amax-compute-algo', default='most_recent',
                       choices=['most_recent', 'max'],
                       help='Algorithm for computing amax from history',
                       dest='fp8_amax_compute_algo')
liangjing's avatar
v1  
liangjing committed
719
720
721
    group.add_argument('--no-fp8-wgrad', action='store_false',
                       help='Execute wgrad in higher precision even for FP8 runs',
                       dest='fp8_wgrad')
liangjing's avatar
liangjing committed
722
    group.add_argument('--transformer-impl', default='transformer_engine',
liangjing's avatar
v1  
liangjing committed
723
                       choices=['local', 'transformer_engine'],
liangjing's avatar
liangjing committed
724
725
726
727
                       help='Which Transformer implementation to use.')
    group.add_argument('--fp8-param-gather', action='store_true',
                       help='Keep the compute param in fp8 (do not use any other intermediate '
                            'dtype) and perform the param all-gather in fp8.')
728
729
730

    return parser

mshoeybi's avatar
mshoeybi committed
731
732
733
734
735
736
737
738
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')
739
740
741
742
743
    group.add_argument('--max-tokens-to-oom',
                       type=int, default=12000,
                       help='Maximum number of tokens during inference'
                       'tokens here is # in prompt + # to generate'
                       'Allows us to throw an error before OOM crashes server')
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
744
745
746
747
748
749
750
751
752
    group.add_argument('--output-bert-embeddings', action='store_true',
                       help='Output Bert embeddings (via mean pooling) from '
                       'model, rather than its binary head output or entire '
                       'hidden batch.')
    group.add_argument('--bert-embedder-type', default="megatron",
                       choices=["megatron", "huggingface"],
                       help='Select either Megatron or Huggingface as the '
                       'Bert embedder.')

mshoeybi's avatar
mshoeybi committed
753
754
    return parser

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
755
756
757
758

def _add_retro_args(parser):
    group = parser.add_argument_group(title='retro')

liangjing's avatar
liangjing committed
759
760
761
    group.add_argument('--retro-project-dir', default=None,
                       help='Retro project directory, which contains the '
                       'preprocessed data for pretraining. This directory '
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
                       'is built during preprocessing (see '
                       'tools/retro/README.md), and contains subdirectories '
                       'for the chunk database and pretraining neighbors.')
    group.add_argument('--retro-add-retriever',
                       action='store_true', default=False,
                       help='Add a retriever to the transformer, for use in '
                       'pretraining a Retro model.')
    group.add_argument('--retro-cyclic-train-iters', type=int, default=None,
                       help='Set number of training iterations for cyclic '
                       'Retro training.')
    group.add_argument('--retro-encoder-layers', type=int, default=2,
                       help='Number of layers to use for the retrieval '
                       'encoder.')
    group.add_argument('--retro-encoder-hidden-dropout',
                       type=float, default=0.1, help='Hidden dropout for '
                       'retrieval encoder.')
    group.add_argument('--retro-encoder-attention-dropout',
                       type=float, default=0.1, help='Attention dropout for '
                       'retrieval encoder.')
    group.add_argument("--retro-num-neighbors", type=int, default=2,
                       help='Number of neighbors to retrieve during '
                       'pretraining.')
    group.add_argument("--retro-num-retrieved-chunks", type=int, default=2,
                       help='Number of chunks to retrieve from the retrieval '
                       'database.')
liangjing's avatar
liangjing committed
787
788
789
790
791
792
    group.add_argument("--retro-attention-gate", type=float, default=1,
                       help="Gated cross attention.")
    group.add_argument("--retro-no-verify-neighbor-count", action="store_false",
                       dest="retro_verify_neighbor_count",
                       help="Skip verifying that len(GPT dataset) == len(saved "
                       "neighbors).")
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
793
794
795
796
797
798
799
800
801
802
803

    # Enforce argument naming convention.
    for action in group._group_actions:
        prefix = action.dest.split("_")[0]
        assert prefix == "retro", \
            "Retro args must be prefixed with '--retro-*', for consistent " \
            "styling. Please fix '%s'." % ", ".join(action.option_strings)

    return parser


Mohammad's avatar
Mohammad committed
804
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
805
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
806

807
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
808
                       help='Number of transformer layers.')
809
810
811
812
    group.add_argument('--encoder-num-layers', type=int, default=None,
                       help='Number of encoder transformer layers.')
    group.add_argument('--decoder-num-layers', type=int, default=None,
                       help='Number of decoder transformer layers.')
813
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
814
                       help='Tansformer hidden size.')
815
    group.add_argument('--ffn-hidden-size', type=int, default=None,
816
817
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
818
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
819
                       help='Number of transformer attention heads.')
820
    group.add_argument('--kv-channels', type=int, default=None,
821
822
823
824
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
liangjing's avatar
v1  
liangjing committed
825
826
827
828
    group.add_argument('--group-query-attention', action='store_true',
                          help='Use group-query attention.')
    group.add_argument('--num-query-groups', type=int, default=1)

829
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
830
831
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
liangjing's avatar
v1  
liangjing committed
832
    group.add_argument('--position-embedding-type', type=str, default='learned_absolute',
liangjing's avatar
liangjing committed
833
                       choices=['learned_absolute', 'rope', 'none'],
liangjing's avatar
v1  
liangjing committed
834
                       help='Position embedding type.')
Mostofa Patwary's avatar
Mostofa Patwary committed
835
    group.add_argument('--use-rotary-position-embeddings', action='store_true',
liangjing's avatar
v1  
liangjing committed
836
837
                       help='Use rotary positional embeddings or not. '
                       'Deprecated: use --position-embedding-type')
liangjing's avatar
liangjing committed
838
839
    group.add_argument('--rotary-base', type=int, default=10000,
                       help='Base to use for rotary positional embeddings, default 10000')
Mostofa Patwary's avatar
Mostofa Patwary committed
840
    group.add_argument('--rotary-percent', type=float, default=1.0,
liangjing's avatar
v1  
liangjing committed
841
                       help='Percent of rotary dimension to use, default 100%%')
liangjing's avatar
liangjing committed
842
843
    group.add_argument('--rotary-interleaved', action='store_true',
                          help='Use interleaved rotary embedding.')
liangjing's avatar
v1  
liangjing committed
844
845
    group.add_argument('--rotary-seq-len-interpolation-factor', type=int, default=None,
                       help='Sequence length interpolation factor for rotary embeddings.')
Mostofa Patwary's avatar
Mostofa Patwary committed
846
847
    group.add_argument('--no-position-embedding',
                       action='store_false',
liangjing's avatar
v1  
liangjing committed
848
                       help='Disable position embedding. Deprecated: use --position-embedding-type',
Mostofa Patwary's avatar
Mostofa Patwary committed
849
                       dest='add_position_embedding')
Mohammad's avatar
Mohammad committed
850
851
852
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
liangjing's avatar
liangjing committed
853
854
855
856
857
    group.add_argument('--normalization', default='LayerNorm',
                       choices=['LayerNorm', 'RMSNorm'],
                       help='Which normalization technique to use.')
    group.add_argument('--norm-epsilon', type=float, default=1e-5,
                       help='Epsilon for layer norm and RMS norm.')
Mostofa Patwary's avatar
Mostofa Patwary committed
858
    group.add_argument('--apply-layernorm-1p', action='store_true',
859
860
                       help='Adjust LayerNorm weights such that they are centered '
                       'around zero. This improves numerical stability.')
Mohammad's avatar
Mohammad committed
861
862
863
864
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
865
866
867
868
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
869
870
871
872
    group.add_argument('--squared-relu', action='store_true',
                       help='Use squared relu activation instead of default gelu')
    group.add_argument('--swiglu', action='store_true',
                       help='Use gated linear units and SiLU activation instead of default gelu')
873
    group.add_argument('--onnx-safe', type=bool, required=False,
874
875
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
876
877
878
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
879
880
    group.add_argument('--untie-embeddings-and-output-weights', action='store_true',
                       help='Untie embeddings and output weights.'),
liangjing's avatar
liangjing committed
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    return parser


def _add_straggler_detector_args(parser):
    group = parser.add_argument_group(title='straggler')
    group.add_argument('--log-straggler', action='store_true',
                       help='If set, tracks and logs straggler per GPU.')
    group.add_argument('--disable-straggler-on-startup', action='store_true',
                       help='If set, StragglerDetector is disabled on startup.')
    group.add_argument('--straggler-ctrlr-port', type=int, default=65535,
                       help='Port number to toggle StragglerDetector on/off at runtime')
    group.add_argument('--straggler-minmax-count', type=int, default=1,
                       help='Number of ranks to report with high/low estimated throughput')
    return parser


def _add_one_logger_args(parser):
    group = parser.add_argument_group(title='one logger')
    group.add_argument('--no-one-logger', action='store_false',
                       help='If set, disable using one_logger to track E2E metrics'
                       'Note that one_logger is an internal tool and not '
                       'available externally. For installation, please go to '
                       'https://confluence.nvidia.com/display/MLWFO/Package+Repositories'
                       'for more details',
                       dest='enable_one_logger')
    group.add_argument('--one-logger-project', type=str, default='megatron-lm',
                       help='The one-logger project name. Will ignore if '
                       '--no-one-logger is set')
    group.add_argument('--one-logger-run-name', type=str, default=None,
                       help='The one-logger run name displayed. Will ignore if '
                       '--no-one-logger is set')
    group.add_argument('--one-logger-async', action='store_true',
                       help='If set, forces one_logger to use async mode.')
    group.add_argument('--app-tag-run-name', type=str, default=None,
                       help='Jobs belonging to same training run, suppose to '
                       'have the same name. It will be used to track progress of '
                       'a training done over multiple different jobs')
    group.add_argument('--app-tag-run-version', type=str, default='0.0.0',
                       help='The version of the training of which current job is '
                       'part of. It will be used to track the changes in the '
                       'application side which might change the performance '
                       'baseline')
    return parser


def _add_ft_package_args(parser):
    group = parser.add_argument_group(title='ft_package')
    group.add_argument('--enable-ft-package', action='store_true',
                       help='If set, Fault Tolerance package is enabled. '
                       'Note: This feature is for Nvidia internal use only.')
    return parser


def _add_config_logger_args(parser):
    group = parser.add_argument_group(title='config logger')
    group.add_argument('--config-logger-dir', type=str, default='',
                       help='If set, will dump all configs to --config-logger-dir',
                       dest='config_logger_dir')
Mohammad's avatar
Mohammad committed
939
940
941
    return parser


942
943
944
945
946
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
947
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
948
                       help='If set, calculate and log the number of zeros in gradient.')
liangjing's avatar
liangjing committed
949
950
951
952
953
954
    group.add_argument('--log-throughput', action='store_true',
                       help='If set, calculate and log throughput per GPU.')
    group.add_argument('--log-progress', action='store_true',
                       help='If set, log progress (in terms of number of processed tokens and '
                       'number of floating-point operations) to progress.txt file in checkpoint '
                       'directory.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
    group.add_argument('--timing-log-level', type=int,
                       default=0, choices=range(0,3),
                       help='Granularity level to measure and report timing. '
                       '   0: report only iteration time and make sure timing '
                       '      does not introduce extra overhead.'
                       '   1: report timing for operations that are executed '
                       '      very limited times (basically once) during '
                       '      each iteration (such as gradient all-reduce) '
                       '   2: report timing for operations that migh be '
                       '      executed numerous times during each iteration. '
                       'Note that setting the level to 1 or 2 might '
                       'cause increase in iteration time.')
    group.add_argument('--no-barrier-with-level-1-timing', action='store_false',
                       help='If not set, use barrier with level 1 time '
                       'measurements. Note that this is up to the user '
                       'to make sure calling barrier with their timers '
                       'will not result in hangs. This can happen if for '
                       'example the user adds a level 1 timer that is not '
                       'called by all ranks.',
                       dest='barrier_with_L1_time')
    group.add_argument('--timing-log-option', type=str, default='minmax',
                       choices=['max', 'minmax', 'all'],
                       help='Options for logging timing:'
                       '  max: report the max timing across all ranks'
                       '  minmax: report min and max timings across all ranks'
                       '  all: report timings of all ranks.')
981
982
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
983
984
985
986
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
987
988
989
990
991
992
993
994
995
996
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
997
998
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
999
                       help='Enable memory logging to tensorboard.')
1000
1001
1002
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
liangjing's avatar
liangjing committed
1003
1004
1005
1006
1007
1008
1009
1010
    group.add_argument('--wandb-project', type=str, default='',
                       help='The wandb project name. Ignore wandb by default.')
    group.add_argument('--wandb-exp-name', type=str, default='',
                       help='The wandb experiment name.')
    group.add_argument('--wandb-save-dir', type=str, default='',
                       help='Path to save the wandb results locally.')
    group.add_argument('--logging-level', type=int, default=None,
                       help='Set default logging level')
1011
1012
1013
    return parser


Mohammad's avatar
Mohammad committed
1014
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
1015
1016
1017
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
1018
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
1019
1020
1021
1022
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1023
    group.add_argument('--start-weight-decay', type=float,
1024
                       help='Initial weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1025
    group.add_argument('--end-weight-decay', type=float,
1026
                       help='End of run weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1027
    group.add_argument('--weight-decay-incr-style', type=str, default='constant',
1028
1029
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
Mohammad's avatar
Mohammad committed
1030
1031
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
1032
    group.add_argument('--adam-beta1', type=float, default=0.9,
1033
1034
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
1035
    group.add_argument('--adam-beta2', type=float, default=0.999,
1036
1037
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
1038
    group.add_argument('--adam-eps', type=float, default=1e-08,
1039
                       help='Term added to the denominator to improve'
1040
                       'numerical stability')
1041
1042
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
1043
1044
    return parser

Mohammad's avatar
Mohammad committed
1045
1046

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
1047
1048
    group = parser.add_argument_group(title='training')

1049
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
1050
1051
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
1052
                       'parallel size times number of micro batches.')
1053
1054
1055
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
1056
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
1057
1058
1059
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
1060
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
1061
1062
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
liangjing's avatar
liangjing committed
1075
1076
1077
1078
1079
1080
1081
    group.add_argument('--decrease-batch-size-if-needed', action='store_true', default=False,
                       help='If set, decrease batch size if microbatch_size * dp_size'
                       'does not divide batch_size. Useful for KSO (Keep Soldiering On)'
                       'to continue making progress if number of healthy GPUs (and'
                       'corresponding dp_size) does not support current batch_size.'
                       'Old batch_size will be restored if training is re-started with'
                       'dp_size that divides batch_size // microbatch_size.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1082
1083
    group.add_argument('--recompute-activations', action='store_true',
                       help='recompute activation to allow for training '
Mohammad's avatar
Mohammad committed
1084
                       'with larger models, sequences, and batch sizes.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1085
    group.add_argument('--recompute-granularity', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1086
                       choices=['full', 'selective'],
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1087
                       help='Checkpoint activations to allow for training '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1088
1089
                       'with larger models, sequences, and batch sizes. '
                       'It is supported at two granularities 1) full: '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1090
                       'whole transformer layer is recomputed, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1091
                       '2) selective: core attention part of the transformer '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1092
                       'layer is recomputed.')
liangjing's avatar
liangjing committed
1093
1094
1095
    group.add_argument('--no-check-for-nan-in-loss-and-grad', action='store_false',
                       help='Check for NaNs in loss and grad',
                       dest='check_for_nan_in_loss_and_grad')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1096
    group.add_argument('--distribute-saved-activations',
1097
                       action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1098
                       help='If set, distribute recomputed activations '
1099
                       'across model parallel group.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1100
    group.add_argument('--recompute-method', type=str, default=None,
1101
1102
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1103
                       'Transformer layers and recompute the input activation of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1104
                       'each divided chunk at specified granularity, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1105
                       '2) recompute the input activations of only a set number of '
slym's avatar
slym committed
1106
                       'individual Transformer layers per pipeline stage and do the '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1107
1108
                       'rest without any recomputing at specified granularity'
                       'default) do not apply activations recompute to any layers')
liangjing's avatar
v1  
liangjing committed
1109
    group.add_argument('--recompute-num-layers', type=int, default=None,
1110
                       help='1) uniform: the number of Transformer layers in each '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1111
                       'uniformly divided recompute unit, '
1112
                       '2) block: the number of individual Transformer layers '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1113
                       'to recompute within each pipeline stage.')
liangjing's avatar
liangjing committed
1114
1115
1116
    group.add_argument('--no-clone-scatter-output-in-embedding', action='store_false',
                       help='If not set, clone the output of the scatter in embedding layer to GC original tensor.',
                       dest='clone_scatter_output_in_embedding')
liangjing's avatar
v1  
liangjing committed
1117
1118
1119
1120
1121
1122
1123
1124
    group.add_argument('--profile', action='store_true',
                       help='Enable nsys profiling. When using this option, nsys '
                       'options should be specified in commandline. An example '
                       'nsys commandline is `nsys profile -s none -t nvtx,cuda '
                       '-o <path/to/output_file> --force-overwrite true '
                       '--capture-range=cudaProfilerApi '
                       '--capture-range-end=stop`.')
    group.add_argument('--profile-step-start', type=int, default=10,
liangjing's avatar
liangjing committed
1125
                       help='Global step to start profiling.')
liangjing's avatar
v1  
liangjing committed
1126
    group.add_argument('--profile-step-end', type=int, default=12,
liangjing's avatar
liangjing committed
1127
1128
1129
1130
1131
                       help='Global step to stop profiling.')
    group.add_argument('--use-pytorch-profiler', action='store_true',
                       help='Use the built-in pytorch profiler. '
                       'Useful if you wish to view profiles in tensorboard.',
                       dest='use_pytorch_profiler')
liangjing's avatar
v1  
liangjing committed
1132
1133
    group.add_argument('--profile-ranks', nargs='+', type=int, default=[0],
                       help='Global ranks to profile.')
liangjing's avatar
liangjing committed
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
    group.add_argument('--tp-comm-overlap', action='store_true', help='Enables the '
                       ' overlap of Tensor parallel communication and GEMM kernels.')
    group.add_argument('--tp-comm-overlap-cfg', type=str, default=None,
                       help='Config file when tp_comm_overlap is enabled.')
    group.add_argument('--disable-tp-comm-overlap-ag', action='store_false',
                       help=('Disables the All-Gather overlap with GEMM by '
                             'pipelining the GEMM and All-Gather.'),
                       dest='tp_comm_overlap_ag')
    group.add_argument('--disable-tp-comm-overlap-rs', action='store_false',
                       help=('Disables the Reduce-Scatter overlap with GEMM by '
                             'pipelining the GEMM and Reduce-Scatter.'),
                       dest='tp_comm_overlap_rs')
    group.add_argument('--tp-comm-overlap-rs-dgrad', action='store_true',
                       help = 'Enables the Reduce-Scatter overlap with dgrad GEMM.',
                       dest='tp_comm_overlap_rs_dgrad')
    group.add_argument('--disable-tp-comm-bulk-dgrad', action='store_false',
                       help='Disables the All-Gather overlap with bprop activation gradient GEMM.',
                       dest='tp_comm_bulk_dgrad')
    group.add_argument('--disable-tp-comm-bulk-wgrad', action='store_false',
                       help='Disables the Reduce-Scatter overlap with bprop weight gradient GEMM.',
                       dest='tp_comm_bulk_wgrad')
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None,
                       help='If set, initialize weights on the CPU. This eliminates init differences based on tensor parallelism.')
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
    group.add_argument('--deterministic-mode', action='store_true',
                       help='Choose code that has deterministic execution. This usually '
                       'means slower execution, but is good for debugging and testing.')
    group.add_argument('--check-weight-hash-across-dp-replicas-interval', type=int, default=None,
                       help='Interval to check weight hashes are same across DP replicas. If not specified, weight hashes not checked.')
    group.add_argument('--calculate-per-token-loss', action='store_true',
                       help=('Scale cross entropy loss by the number of non-padded tokens in the '
                             'global batch, versus the default behavior of assuming all tokens are non-padded.'))
    group.add_argument('--train-sync-interval', type=int, default=None,
                       help='Training CPU-GPU synchronization interval, to ensure that CPU is not running too far ahead of GPU.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1173
1174
1175
1176
1177

    # deprecated
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
Mohammad's avatar
Mohammad committed
1178
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
1179
                       help='Total number of iterations to train over all '
1180
1181
1182
1183
1184
1185
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
1186
1187
1188
1189
1190
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
1191
1192
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
1193
1194
1195
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
Mohammad's avatar
Mohammad committed
1196
1197
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
1198
    group.add_argument('--no-masked-softmax-fusion',
1199
1200
1201
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
1202
                       dest='masked_softmax_fusion')
1203
1204
1205
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
liangjing's avatar
liangjing committed
1206
1207
1208
1209
    group.add_argument('--no-bias-swiglu-fusion', action='store_false',
                       help='Disable bias and swiglu fusion, the fusion is '
                       'available only when using megatron-core.',
                       dest='bias_swiglu_fusion')
1210
1211
1212
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
liangjing's avatar
liangjing committed
1213
1214
1215
1216
1217
1218
1219
    group.add_argument('--no-rope-fusion', action='store_false',
                       help='Disable rope fusion, the fusion is available '
                       'only when using megatron-core.',
                       dest='apply_rope_fusion')
    group.add_argument('--cross-entropy-loss-fusion', action='store_true',
                       help='Enabled fusion of cross entropy loss calculation.',
                       dest='cross_entropy_loss_fusion')
unknown's avatar
unknown committed
1220
    group.add_argument('--use-flash-attn', action='store_true',
1221
1222
                       help='use FlashAttention implementation of attention. '
                       'https://arxiv.org/abs/2205.14135')
1223
1224
1225
    group.add_argument('--disable-bias-linear', action='store_false',
                       help='Disable bias in the linear layers',
                       dest='add_bias_linear')
liangjing's avatar
liangjing committed
1226
1227
1228
    group.add_argument('--add-qkv-bias', action='store_true',
                       help='Enable bias only in the QKV linear layers',
                       dest='add_qkv_bias')
1229
1230
1231
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
1232
    group.add_argument('--dataloader-type', type=str, default=None,
liangjing's avatar
liangjing committed
1233
                       choices=['single', 'cyclic', 'external'],
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1234
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
1235
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
Sangkug Lym's avatar
Sangkug Lym committed
1236
                       action='store_false',
liangjing's avatar
liangjing committed
1237
                       help='DEPRECATED. This flag is ignored.',
Sangkug Lym's avatar
Sangkug Lym committed
1238
                       dest='async_tensor_model_parallel_allreduce')
Sangkug Lym's avatar
Sangkug Lym committed
1239
1240
1241
1242
1243
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1244
    group.add_argument('--sequence-parallel', action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1245
                       help='Enable sequence parallel optimization.')
Sangkug Lym's avatar
Sangkug Lym committed
1246
1247
    group.add_argument('--no-gradient-accumulation-fusion',
                       action='store_false',
1248
                       help='Disable fusing gradient accumulation to weight '
Sangkug Lym's avatar
Sangkug Lym committed
1249
1250
                       'gradient computation of linear layers',
                       dest='gradient_accumulation_fusion')
liangjing's avatar
liangjing committed
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
    group.add_argument('--use-mcore-models', action='store_true',
                       dest='deprecated_use_mcore_models',
                       help='DEPRECATED. Use the implementation from megatron core.'
                       'Now ignored and mcore models are the default, use '
                       '--use-legacy-models to not use core models.')
    group.add_argument('--use-legacy-models', action='store_true',
                       help='Use the legacy Megatron models, not Megatron-Core models.')
    group.add_argument('--manual-gc', action='store_true',
                       help='Disable the threshold-based default garbage '
                       'collector and trigger the garbage collection manually. '
                       'Manual garbage collection helps to align the timing of '
                       'the collection across ranks which mitigates the impact '
                       'of CPU-associated jitters. When the manual gc is enabled, '
                       'garbage collection is performed only at the start and the '
                       'end of the validation routine by default.')
    group.add_argument('--manual-gc-interval', type=int, default=0,
                       help='Training step interval to trigger manual garbage '
                       'collection. When the value is set to 0, garbage '
                       'collection is not triggered between training steps.')
    group.add_argument('--no-manual-gc-eval', action='store_false',
                       help='When using manual garbage collection, disable '
                       'garbage collection at the start and the end of each '
                       'evaluation run.', dest='manual_gc_eval')
    group.add_argument('--disable-tp-comm-split-ag', action='store_false',
                       help='Disables the All-Gather overlap with fprop GEMM.',
                       dest='tp_comm_split_ag')
    group.add_argument('--disable-tp-comm-split-rs', action='store_false',
                       help='Disables the Reduce-Scatter overlap with fprop GEMM.',
                       dest='tp_comm_split_rs')

Mohammad's avatar
Mohammad committed
1281
1282
1283
    return parser


Mohammad's avatar
Mohammad committed
1284
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
1285
1286
1287
1288
1289
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
1290
1291
1292
    group.add_argument('--data-parallel-random-init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
Mohammad's avatar
Mohammad committed
1293
1294
1295
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
1296
1297
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
1298

Mohammad's avatar
Mohammad committed
1299
1300
1301
    return parser


Mohammad's avatar
Mohammad committed
1302
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
1303
1304
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
1305
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
1306
                       help='Initial learning rate. Depending on decay style '
liangjing's avatar
liangjing committed
1307
                       'and initial warmup, the learning rate at each '
Mohammad's avatar
Mohammad committed
1308
1309
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
liangjing's avatar
liangjing committed
1310
                       choices=['constant', 'linear', 'cosine', 'inverse-square-root', 'WSD'],
Mohammad's avatar
Mohammad committed
1311
                       help='Learning rate decay function.')
liangjing's avatar
liangjing committed
1312
1313
1314
    group.add_argument('--lr-wsd-decay-style', type=str, default='exponential',
                       choices=['exponential', 'linear', 'cosine'],
                       help='Decay style for the annealing phase of WSD'),
Mohammad's avatar
Mohammad committed
1315
1316
1317
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
1318
1319
1320
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
liangjing's avatar
liangjing committed
1321
1322
1323
1324
    group.add_argument('--lr-wsd-decay-samples', type=int, default=None,
                       help='number of samples for the annealing phase in the wsd schedule')
    group.add_argument('--lr-wsd-decay-iters', type=int, default=None,
                       help='number of iterations for the annealing phase in the wsd schedule')
1325
1326
1327
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
1328
1329
1330
1331
1332
1333
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
liangjing's avatar
v1  
liangjing committed
1334
1335
1336
    group.add_argument('--lr-warmup-init', type=float, default=0.0,
                       help='Initial value for learning rate warmup. The '
                       'scheduler starts warmup from this value.')
1337
    group.add_argument('--warmup', type=int, default=None,
1338
                       help='Old lr warmup argument, do not use. Use one of the'
1339
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
1340
    group.add_argument('--min-lr', type=float, default=0.0,
liangjing's avatar
liangjing committed
1341
                       help='Minimum value for learning rate. The scheduler'
Mohammad's avatar
Mohammad committed
1342
                       'clip values below this threshold.')
1343
    group.add_argument('--override-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
1344
1345
1346
1347
1348
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
1349
    group.add_argument('--use-checkpoint-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
1350
1351
1352
1353
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')
liangjing's avatar
liangjing committed
1354
1355
1356
1357
1358
    group.add_argument('--decoupled-lr', type=float, default=None,
                       help='Separate learning rate for the input and output layer')
    group.add_argument('--decoupled-min-lr', type=float, default=None,
                       help='Minimum value for learning rate for the input and output layer. The scheduler'
                       'clip values below this threshold')
Mohammad's avatar
Mohammad committed
1359
1360
1361
1362

    return parser


Mohammad's avatar
Mohammad committed
1363
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
1364
1365
1366
1367
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
liangjing's avatar
liangjing committed
1368
1369
    group.add_argument('--save-interval', '--persistent-save-interval', type=int, default=None,
                       help='Number of iterations between persistent checkpoint saves.')
1370
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
1371
                       help='Do not save current optimizer.')
1372
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
1373
1374
1375
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
1376
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
1377
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
1378
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
1379
                       help='Do not load rng state when loading checkpoint.')
liangjing's avatar
liangjing committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
    group.add_argument('--non-persistent-save-interval', type=int, default=None,
                       help='Number of iterations between non-persistent saves.')
    group.add_argument('--non-persistent-ckpt-type', type=str, default=None,
                       choices=['global', 'local', 'in_memory', None],
                       help='Type of non-persistent model checkpoints. '
                           '"global" - Saved as a standard checkpoint (e.g., on Lustre) with old checkpoints being removed. '
                           '"local" - [TBD] Each rank saves a portion of the checkpoint locally (e.g., on SSD/ramdisk). '
                           '"in_memory" - [TBD] A special kind of local checkpoint that avoids serialization. '
                           'None - No non-persistent checkpointing (default option).')
    group.add_argument('--non-persistent-global-ckpt-dir', type=str, default=None,
                       help='Directory containing global non-persistent model checkpoints.')
    group.add_argument('--non-persistent-local-ckpt-dir', type=str, default=None,
                       help='Directory containing local non-persistent model checkpoints.')
    group.add_argument('--non-persistent-local-ckpt-algo', type=str, default='fully_parallel',
                       choices=['fully_parallel', 'atomic'],
                       help='Algorithm for local non-persistent checkpointing.')
Mohammad's avatar
Mohammad committed
1396
1397
1398
1399
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')
liangjing's avatar
liangjing committed
1400
1401
1402
1403
    group.add_argument('--pretrained-checkpoint', type=str, default=None,
                       help='Directory containing a pretrained model checkpoint for finetuning.')
    group.add_argument('--ckpt-step', type=int, default=None,
                       help='Checkpoint step to load model from.')
1404
1405
1406
1407
1408
    group.add_argument('--no-initialization', action='store_false',
                       help='Do not perform initialization when building model, '
                       'can reduce startup time when definitely loading from a '
                       'checkpoint',
                       dest='perform_initialization')
1409
1410
1411
    group.add_argument('--use-checkpoint-args', action='store_true',
                       help='Override any command line arguments with arguments '
                       'from the checkpoint')
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
1412
1413
1414
1415
    group.add_argument('--exit-on-missing-checkpoint', action='store_true',
                       help="If '--load' is set, but checkpoint is not found "
                       "(e.g., path typo), then exit instead of random "
                       "initialization.")
liangjing's avatar
liangjing committed
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
    group.add_argument('--use-dist-ckpt', action='store_true',
                       dest='use_dist_ckpt_deprecated',
                       help='Deprecated: see --ckpt-format.')
    group.add_argument('--auto-detect-ckpt-format', action='store_true',
                       help='Determine if the checkpoint format is in legacy or distributed format.'
                            ' If False, expects distributed checkpoint iff args.ckpt_format != "torch".'
                            ' Might slow down loading a bit (double rank0 ckpt load).')
    group.add_argument('--dist-ckpt-format',
                       dest='dist_ckpt_format_deprecated',
                       help='Deprecated: see --ckpt-format.')
    group.add_argument('--ckpt-format', default='torch_dist',
                       choices=['torch', 'torch_dist', 'zarr'],
                       help='Checkpoint format to use.')
    group.add_argument('--ckpt-convert-format', default=None,
                       choices=['torch', 'torch_dist', 'zarr'],
                       help='Checkpoint format for conversion.')
    group.add_argument('--ckpt-convert-save', default=None,
                       help='Save directory for converted checkpoint.')
    group.add_argument('--ckpt-convert-update-legacy-dist-opt-format', action='store_true',
                       help='When loading a checkpoint, update the legacy format '
                       'for the distributed optimizer, which previously used a '
                       'merged param/grad buffer and a different bucket mapping. '
                       'The legacy format was deprecated on Feb 13, 2024.')
    group.add_argument('--ckpt-fully-parallel-save', action='store_true',
                       dest='ckpt_fully_parallel_save_deprecated',
                       help='Deprecated: see --no-ckpt-fully-parallel-save.')
    group.add_argument('--no-ckpt-fully-parallel-save', action='store_false',
                       dest='ckpt_fully_parallel_save',
                       help='Disable applying full save parallelization across DP for'
                            ' distributed checkpoints. Depending on ckpt format'
                            ' might decrease the number of files in the checkpoint.'
                            ' Makes DistributedOptimizer checkpoint non-reshardable.')
    group.add_argument('--async-save', action='store_true', default=None,
                       help='Apply async checkpointing save. Currently works only with'
                            '`torch_dist` distributed checkpoint format.')
    group.add_argument('--ckpt-fully-parallel-load', action='store_true',
                       help='Apply full load parallelization across DP for'
                            ' distributed checkpoints.')
    group.add_argument('--ckpt-assume-constant-structure', action='store_true',
                       help='If the model and optimizer state dict structure is'
                            'constant throughout a *single training job*, it allows for'
                            'different checkpointing performance optimizations.')
    group.add_argument('--dist-ckpt-strictness', type=str, default='assume_ok_unexpected',
                       choices=[e.value for e in StrictHandling],
                       help='Determine handling of key mismatch during checkpoint load.'
                            ' Check StrictHandling docs for flags meaning.'
                            ' NOTE: This flag controls only distributed checkpoint'
                            ' load from storage, not loading state dict into the model.')
Mohammad's avatar
Mohammad committed
1464
1465
1466
    return parser


Mohammad's avatar
Mohammad committed
1467
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
1468
1469
1470
1471
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1472
1473
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
1474
1475
1476
1477
1478
1479
1480
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
liangjing's avatar
liangjing committed
1481
                       help='Minimum loss scale for dynamic loss scaling.')
mohammad's avatar
mohammad committed
1482
1483
1484
1485
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
1486
1487
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
liangjing's avatar
liangjing committed
1488
1489
1490
    group.add_argument('--apply-query-key-layer-scaling', action='store_true',
                       help='Scale Q * K^T by 1 / layer-number. '
                       'Useful for fp16 training. Also sets `attention_softmax_in_fp32` to True.')
Mohammad's avatar
Mohammad committed
1491
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
liangjing's avatar
liangjing committed
1492
                       help='Run attention masking and softmax in fp32.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1493
1494
1495
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
1496
1497
1498
1499
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
1500
1501
1502
    return parser


Mohammad's avatar
Mohammad committed
1503
def _add_distributed_args(parser):
1504
1505
    group = parser.add_argument_group(title='distributed')

1506
1507
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
liangjing's avatar
liangjing committed
1508
1509
    group.add_argument('--encoder-tensor-model-parallel-size', type=int, default=0,
                       help='Degree of tensor model parallelism for the encoder.')
1510
1511
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
liangjing's avatar
liangjing committed
1512
1513
1514
    group.add_argument('--encoder-pipeline-model-parallel-size', type=int, default=0,
                       help=('Degree of pipeline model parallelism in the encoder. This is '
                             'independent of the amount of pipeline in the decoder.'))
1515
1516
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
liangjing's avatar
liangjing committed
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
                       help=('Rank where encoder and decoder should be split. '
                             'Deprecated; use --encoder-pipeline-model-parallel-size instead.'))
    group.add_argument('--decoder-first-pipeline-num-layers',
                       type=int, default=None,
                       help=('The number of transformer layers on the first pipeline stage of the decoder. '
                       'Default None is even split of transformer layers across all pipeline stages'))
    group.add_argument('--decoder-last-pipeline-num-layers',
                       type=int, default=None,
                       help=('The number of transformer layers on the last pipeline stage of the decoder. '
                       'Default None is even split of transformer layers across all pipeline stages'))
1527
1528
1529
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
1530
1531
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
liangjing's avatar
liangjing committed
1532
    group.add_argument('--no-overlap-p2p-communication', action='store_false',
liangjing's avatar
v1  
liangjing committed
1533
1534
                       help='overlap pipeline parallel communication with forward and backward chunks',
                       dest='overlap_p2p_comm')
Mohammad's avatar
Mohammad committed
1535
1536
1537
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
1538
1539
    group.add_argument('--distributed-timeout-minutes', type=int, default=10,
                       help='Timeout minutes for torch.distributed.')
liangjing's avatar
liangjing committed
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
    group.add_argument('--overlap-grad-reduce', action='store_true',
                       default=False, help='If set, overlap DDP grad reduce.')
    group.add_argument('--defer-embedding-wgrad-compute', action='store_true',
                       default=False, help='If set, defers the vocabulary projection linear layer weight'
                       'gradient compute to pipeline flush.', dest='defer_embedding_wgrad_compute')
    group.add_argument('--wgrad-deferral-limit', type=int, default=0, help='Number of micro-batches for which'
                       'weight gradient computation of vocabulary projection is deferred, defaults to 0 which'
                       'means all the micro-batches are deferred. Invalid if `defer-embedding-wgrad-compute`'
                       'is not set')
    group.add_argument('--no-align-grad-reduce', action='store_false',
                       help='If not set, all PP stages will launch gradient reduces simultaneously. '
                       'Otherwise, each PP stage will independently launch as needed.',
                       dest='align_grad_reduce')
    group.add_argument('--ddp-bucket-size', type=int, default=None,
                       help='Bucket size for data-parallel communication')
    group.add_argument('--ddp-average-in-collective', action='store_true',
                       default=False, help='If set, average directly in data-parallel communication collective.')
    group.add_argument('--overlap-param-gather', action='store_true',
                       default=False, help='If set, overlap param all-gather in distributed optimizer.')
    group.add_argument('--overlap-param-gather-with-optimizer-step', action='store_true',
                       default=False, help='If set, overlap param all-gather of first bucket with optimizer step.')
    group.add_argument('--no-align-param-gather', action='store_false',
                       help='If not set, all PP stages will launch param all-gathers simultaneously. '
                       'Otherwise, each PP stage will independently launch as needed.',
                       dest='align_param_gather')
1565
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
liangjing's avatar
liangjing committed
1566
                       help='If not set, use scatter/gather to optimize communication of tensors in pipeline.',
1567
                       dest='scatter_gather_tensors_in_pipeline')
1568
1569
1570
1571
    group.add_argument('--use-ring-exchange-p2p', action='store_true',
                       default=False, help='If set, use custom-built ring exchange '
                       'for p2p communications. Note that this option will require '
                       'a custom built image that support ring-exchange p2p.')
unknown's avatar
unknown committed
1572
    group.add_argument('--local-rank', type=int, default=int(os.getenv('LOCAL_RANK', '0')),
Mohammad's avatar
Mohammad committed
1573
                       help='local rank passed from distributed launcher.')
1574
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
1575
1576
1577
1578
1579
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
1580
    group.add_argument('--standalone-embedding-stage', action='store_true',
Lawrence McAfee's avatar
Lawrence McAfee committed
1581
1582
                       default=False, help='If set, *input* embedding layer '
                       'is placed on its own pipeline stage, without any '
Lawrence McAfee's avatar
Lawrence McAfee committed
1583
1584
                       'transformer layers. (For T5, this flag currently only '
                       'affects the encoder embedding.)')
1585
1586
    group.add_argument('--use-distributed-optimizer', action='store_true',
                       help='Use distributed optimizer.')
liangjing's avatar
liangjing committed
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
    group.add_argument('--context-parallel-size', type=int, default=1,
                       help='Degree of context parallelism.')
    group.add_argument('--nccl-communicator-config-path', type=str, default=None,
                       help='Path to the yaml file with NCCL communicator '
                       'configurations. The number of min/max thread groups and thread '
                       'group cluster size of each communicator can be configured by '
                       'setting `min_ctas`, `max_ctas`, and `cga_cluster_size`.')
    group.add_argument('--use-tp-pp-dp-mapping', action='store_true', default=False,
                        help='If set, distributed ranks initialize order is changed '
                        'from tp-dp-pp to tp-pp-dp. Make sure EP and CP aren\'t used '
                        'with this option enabled')
Mohammad's avatar
Mohammad committed
1598
1599
1600
    return parser


Mohammad's avatar
Mohammad committed
1601
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
1602
1603
1604
1605
1606
1607
1608
1609
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')
liangjing's avatar
liangjing committed
1610
    group.add_argument("--test-mode", action="store_true", help='Run all real-time test alongside the experiment.')
liangjing's avatar
v1  
liangjing committed
1611
1612
1613
    group.add_argument('--skip-train', action='store_true',
                       default=False, help='If set, bypass the training loop, '
                       'optionally do evaluation for validation/test, and exit.')
Mohammad's avatar
Mohammad committed
1614

Mohammad's avatar
Mohammad committed
1615
1616
1617
    return parser


Mohammad's avatar
Mohammad committed
1618
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
1619
1620
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
1621
    group.add_argument('--data-path', nargs='*', default=None,
liangjing's avatar
liangjing committed
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
                       help='The weight and prefix list for a set of train, validation, and test'
                       'datasets which split according to --split. The accepted formats are: '
                       '(1) a single prefix, '
                       '(2) a list of weight prefix pairs e.g. weight1 prefix1 weight2 prefix2, '
                       '(3) a list of prefixes e.g. prefix1 prefix2. '
                       'For (3), weights are inferred from the lengths of the contributing datasets. '
                       'This argument is exclusive to the other independent --*-data-path arguments.')
    group.add_argument('--renormalize-blend-weights', action='store_true',
                       help='Renormalize the blend weights to account for the mid-level dataset '
                       'oversampling done to ensure fulfillment of the requested number of '
                       'samples. Use this option if prompted. Defaults to False for backward '
                       'comparability in the data sample order.')
    group.add_argument('--split', type=str, default=None,
Mohammad's avatar
Mohammad committed
1635
1636
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
1637
1638
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
1639
    group.add_argument('--train-data-path', nargs='*', default=None,
liangjing's avatar
liangjing committed
1640
1641
                       help='The weight and prefix list for an independent train dataset. '
                       'Follows the same pattern rules as --data-path.')
1642
    group.add_argument('--valid-data-path', nargs='*', default=None,
liangjing's avatar
liangjing committed
1643
1644
                       help='The weight and prefix list for an independent validation dataset. '
                       'Follows the same pattern rules as --data-path.')
1645
    group.add_argument('--test-data-path', nargs='*', default=None,
liangjing's avatar
liangjing committed
1646
1647
                       help='The weight and prefix list for an independent test dataset. '
                       'Follows the same pattern rules as --data-path.')
liangjing's avatar
v1  
liangjing committed
1648
1649
    group.add_argument('--data-cache-path', default=None,
                       help='Path to a directory to hold cached index files.')
liangjing's avatar
liangjing committed
1650
1651
1652
1653
1654
1655
    group.add_argument('--no-mmap-bin-files', action='store_false',
                       help='Disable mmap-ing of .bin files.',
                       dest='mmap_bin_files')
    group.add_argument('--mock-data', action='store_true',
                       help='Skip data loading and validation and opt for artificial '
                       'generation of mock data when an implementation is available.')
liangjing's avatar
v1  
liangjing committed
1656
1657
    group.add_argument('--vocab-size', type=int, default=None,
                       help='Size of vocab before EOD or padding.')
Mohammad's avatar
Mohammad committed
1658
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
1659
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
1660
1661
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
1662
1663
1664
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
1665
    group.add_argument('--seq-length', type=int, default=None,
1666
                       help='Maximum sequence length to process.')
1667
    group.add_argument('--encoder-seq-length', type=int, default=None,
1668
1669
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
1670
1671
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
1672
1673
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
1674
                       'for retriever')
1675
1676
1677
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
1678
1679
1680
1681
1682
1683
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
1684
1685
1686
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
1687
                                'BertWordPieceCase',
1688
                                'GPT2BPETokenizer',
1689
                                'SentencePieceTokenizer',
liangjing's avatar
v1  
liangjing committed
1690
                                'GPTSentencePieceTokenizer',
liangjing's avatar
liangjing committed
1691
1692
1693
                                'HuggingFaceTokenizer',
                                'Llama2Tokenizer',
                                'TikTokenizer',
liangjing's avatar
v1  
liangjing committed
1694
                                'NullTokenizer'],
Mohammad's avatar
Mohammad committed
1695
                       help='What type of tokenizer to use.')
1696
    group.add_argument('--tokenizer-model', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1697
                       help='Sentencepiece tokenizer model.')
liangjing's avatar
liangjing committed
1698
1699
1700
1701
1702
1703
    group.add_argument('--tiktoken-pattern', type=str, default=None,
                       help='Which tiktoken pattern to use. Options: [v1, v2]')
    group.add_argument('--tiktoken-num-special-tokens', type=int, default=1000,
                       help='Number of special tokens in tiktoken tokenizer')
    group.add_argument('--tiktoken-special-tokens', type=str, nargs='+', default=None,
                       help='List of tiktoken special tokens, needs to have ["<unk>", "<s>", "</s>"]')
1704
1705
1706
1707
1708
1709
1710
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
liangjing's avatar
liangjing committed
1711
1712
1713
1714
1715
1716
1717
    group.add_argument('--no-create-attention-mask-in-dataloader', action='store_false',
                       help='If set, do not create attention_masks in dataloader.',
                       dest='create_attention_mask_in_dataloader')
    group.add_argument('--num-dataset-builder-threads', type=int, default=1,
                       help='Number of parallel threads per rank for dataset builder')
    group.add_argument('--s3-cache-path', type=str, default=None,
                       help='Path to cache index files when using s3 dataloader')
Mohammad's avatar
Mohammad committed
1718
1719
    return parser

Raul Puri's avatar
Raul Puri committed
1720

Mohammad's avatar
Mohammad committed
1721
1722
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
1723

Mohammad's avatar
Mohammad committed
1724
1725
1726
1727
1728
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
1729

Mohammad's avatar
Mohammad committed
1730
    return parser
Neel Kant's avatar
Neel Kant committed
1731
1732


Mostofa Patwary's avatar
Mostofa Patwary committed
1733
1734
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
1735
1736
1737

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
1738
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
1739
                        'REALM (paper default: 128)')
1740
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
1741
1742
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
1743
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
1744
1745
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
1746
1747
1748
1749
1750

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
1751
1752
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
1753
1754
1755
1756
1757

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
1758
1759
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
1760
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
1761
                       help='Whether to use one sentence documents in ICT')
1762
1763
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
1764

1765
    # training
1766
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
1767
1768
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
1769
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
1770
1771
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
1772

Neel Kant's avatar
Neel Kant committed
1773
    # faiss index
Neel Kant's avatar
Neel Kant committed
1774
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
1775
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
1776
1777
1778
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
1779
1780
1781

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
1782
1783
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
1784
    group.add_argument('--indexer-log-interval', type=int, default=1000,
1785
1786
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
1787
    return parser
1788
1789


1790
1791
def _add_vision_args(parser):
    group = parser.add_argument_group(title="vision")
1792

1793
    # general vision arguements
1794
1795
    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
1796
1797
1798
1799
    group.add_argument('--img-h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img-w', type=int, default=224,
                       help='Image height for vision classification task')
1800
1801
1802
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
1803
                       help='patch dimension')
1804
1805
1806
1807
1808
1809
1810
    group.add_argument('--classes-fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data-per-class-fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no-data-sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
1811
1812
1813
1814
    group.add_argument('--head-lr-mult', type=float, default=1.0,
                       help='learning rate multiplier for head during finetuning')

    # pretraining type and backbone selection`
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1815
1816
    group.add_argument('--vision-pretraining', action='store_true',
                       help='flag to indicate vision pretraining')
1817
    group.add_argument('--vision-pretraining-type', type=str, default='classify',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1818
                       choices=['classify', 'inpaint', 'dino'],
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
                       help='pretraining objectives')
    group.add_argument('--vision-backbone-type', type=str, default='vit',
                       choices=['vit', 'mit', 'swin'],
                       help='backbone types types')
    group.add_argument('--swin-backbone-type', type=str, default='tiny',
                       choices=['tiny', 'base', 'h3'],
                       help='pretraining objectives')
    # inpainting arguments
    group.add_argument('--mask-type', type=str, default='random',
                       choices=['random', 'row'],
                       help='mask types')
    group.add_argument('--mask-factor', type=float, default=1.0,
                       help='mask size scaling parameter')
liangjing's avatar
v1  
liangjing committed
1832

1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
    # dino arguments
    group.add_argument('--iter-per-epoch', type=int, default=1250,
                       help='iterations per epoch')
    group.add_argument('--dino-local-img-size', type=int, default=96,
                       help='Image size for vision classification task')
    group.add_argument('--dino-local-crops-number', type=int, default=10,
                       help='Number of local crops')
    group.add_argument('--dino-head-hidden-size', type=int, default=2048,
                       help='Hidden dimension size in dino head')
    group.add_argument('--dino-bottleneck-size', type=int, default=256,
                       help='Bottle neck dimension in dino head ')
    group.add_argument('--dino-freeze-last-layer', type=float, default=1,
                       help='Freezing last layer weights')
    group.add_argument('--dino-norm-last-layer', action='store_true',
                       help='Disable Norm in last layer.')
    group.add_argument('--dino-warmup-teacher-temp', type=float, default=0.04,
                       help='warump teacher temperature')
    group.add_argument('--dino-teacher-temp', type=float, default=0.07,
                       help='teacher temperature')
    group.add_argument('--dino-warmup-teacher-temp-epochs', type=int, default=30,
                       help='warmup teacher temperaure epochs')
1854

liangjing's avatar
liangjing committed
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
    # regularization arguments
    group.add_argument('--qk-layernorm', action='store_true',
                       help='Whether to layer normalize the q and k attention embeddings.')

    return parser

def _add_moe_args(parser):
    group = parser.add_argument_group(title="moe")
    group.add_argument('--expert-model-parallel-size', type=int, default=1,
                       help='Degree of expert model parallelism.')
    group.add_argument('--num-experts', type=int, default=None,
                       help='Number of Experts in MoE (None means no MoE)')
    group.add_argument('--moe-router-load-balancing-type', type=str,
                       choices=['aux_loss', 'sinkhorn', 'none'],
                       default='aux_loss',
                       help='Determines the load balancing strategy for the router. "aux_loss" corresponds to the load balancing loss used in GShard and SwitchTransformer, "sinkhorn" corresponds to the balancing algorithm used in S-BASE, and "none" implies no load balancing. The default is "aux_loss".')
    group.add_argument('--moe-router-topk', type=int, default=2,
                       help='Number of experts to route to for each token. The default is 2.')
    group.add_argument('--moe-router-pre-softmax', action='store_true',
                       help='Enable pre-softmax routing for MoE, which means softmax is before the top-k selection. By default, softmax is done after top-k.')
    group.add_argument('--moe-grouped-gemm', action='store_true',
                       help='When there are multiple experts per rank, launch multiple local GEMM kernels in multiple streams to improve the utilization and performance with GroupedLinear in TransformerEngine.')
    group.add_argument('--moe-aux-loss-coeff', type=float, default=0.0,
                       help='Scaling coefficient for the aux loss: a starting value of 1e-2 is recommended.')
    group.add_argument('--moe-z-loss-coeff', type=float, default=None,
                       help='Scaling coefficient for the z-loss: a starting value of 1e-3 is recommended.')
    group.add_argument('--moe-input-jitter-eps', type=float, default=None,
                       help='Add noise to the input tensor by applying jitter with a specified epsilon value.')
    group.add_argument('--moe-token-dispatcher-type', type=str,
                       choices=['allgather', 'alltoall', 'alltoall_seq'],
                       default='allgather',
                       help="The type of token dispatcher to use. The default is 'allgather'. Options are 'allgather', 'alltoall' and 'alltoall_seq'. We recommend using 'alltoall' when applying expert parallelism. For more information, please refer to the documentation in core/moe/README.")
    group.add_argument('--moe-per-layer-logging', action='store_true',
                       help='Enable per-layer logging for MoE, currently supports auxiliary loss and z loss.')
    # Token dropping arguments
    group.add_argument('--moe-expert-capacity-factor', type=float, default=None,
                       help='The capacity factor for each expert, None means no token will be dropped.')
    group.add_argument('--moe-pad-expert-input-to-capacity', action='store_true',
                       help='Pads the input for each expert to match the expert capacity length, effective only after the --moe-expert-capacity-factor is set.')
    group.add_argument('--moe-token-drop-policy', type=str, default='probs', choices=['probs', 'position'],
                       help='The policy to drop tokens. Can be either "probs" or "position". If "probs", the tokens with the lowest probabilities will be dropped. If "position", tokens at the end of each batch will be dropped.')
    group.add_argument('--moe-layer-recompute', action='store_true',
                       help='Enable checkpointing for moe_layer, should be used when memory is not sufficient.')
    group.add_argument('--moe-extended-tp', action='store_true',
                       help='Alternative to expert parallelism, all experts are sharded across TPXEP domain.')
    group.add_argument('--moe-use-upcycling', action='store_true',
                       help='Load a checkpoint of a dense model, convert it into an MoE model, and save the converted model to the path specified by --save. '
                       'Upcycling is implemented on the top of distributed checkpointing, so it supports parallel modes different from the dense model.')

    return parser

def _add_experimental_args(parser):
    group = parser.add_argument_group(title='experimental')

    group.add_argument('--spec', type=str, default=None, nargs='*',
                       help='Specify the <module_location function_name> pair '
                       'that returns a spec to customize a model, transformer '
                       'block, or transformer layer, depending on the use case.'
                       'To use local spec specify local as the argument.'
                       'For more details, see the model class, '
                       '`transformer_block.py`, or `transformer_layer.py`')
    group.add_argument('--hybrid-attention-ratio', type=float, default=0.0,
                       help='Ratio of attention layers to total layers, in the '
                       'range [0.0, 1.0].')
    group.add_argument('--hybrid-mlp-ratio', type=float, default=0.0,
                       help='Ratio of mlp layers to total layers, in the '
                       'range [0.0, 1.0].')
    group.add_argument('--hybrid-override-pattern', type=str, default=None,
                       help='Force a specific hybrid layer pattern. If a value'
                       'greater than 0.0 is supplied to any of the hybrid ratio'
                       'arguments, then the number of each type of layer in the'
                       'override pattern must match number in the overidden'
                       'pattern')
    group.add_argument('--yaml-cfg', type=str, default=None,
                       help = 'Config file to add additional arguments')
    return parser