indexed_dataset.py 18.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


# copied from fairseq/fairseq/data/indexed_dataset.py
# Removed IndexedRawTextDataset since it relied on Fairseq dictionary
# other slight modifications to remove fairseq dependencies
10
11
# Added document index to index file and made it accessible.
#    An empty sentence no longer separates documents.
12
13
14
15
16

from functools import lru_cache
import os
import shutil
import struct
17
from itertools import accumulate
18
19
20

import numpy as np
import torch
21
from megatron import print_rank_0
22

Neel Kant's avatar
Neel Kant committed
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def __best_fitting_dtype(vocab_size=None):
    if vocab_size is not None and vocab_size < 65500:
        return np.uint16
    else:
        return np.int32


def get_available_dataset_impl():
    return ['lazy', 'cached', 'mmap']


def infer_dataset_impl(path):
    if IndexedDataset.exists(path):
        with open(index_file_path(path), 'rb') as f:
            magic = f.read(8)
            if magic == IndexedDataset._HDR_MAGIC:
                return 'cached'
            elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
                return 'mmap'
            else:
                return None
    else:
46
47
        print(f"Dataset does not exist: {path}")
        print("Path should be a basename that both .idx and .bin can be appended to get full filenames.")
48
49
50
51
52
53
54
55
56
57
        return None


def make_builder(out_file, impl, vocab_size=None):
    if impl == 'mmap':
        return MMapIndexedDatasetBuilder(out_file, dtype=__best_fitting_dtype(vocab_size))
    else:
        return IndexedDatasetBuilder(out_file)


58
def make_dataset(path, impl, skip_warmup=False):
59
60
61
62
    if not IndexedDataset.exists(path):
        print(f"Dataset does not exist: {path}")
        print("Path should be a basename that both .idx and .bin can be appended to get full filenames.")
        return None
63
64
    if impl == 'infer':
        impl = infer_dataset_impl(path)
65
    if impl == 'lazy' and IndexedDataset.exists(path):
66
        return IndexedDataset(path)
67
    elif impl == 'cached' and IndexedDataset.exists(path):
68
        return IndexedCachedDataset(path)
69
    elif impl == 'mmap' and MMapIndexedDataset.exists(path):
70
        return MMapIndexedDataset(path, skip_warmup)
71
    print(f"Unknown dataset implementation: {impl}")
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    return None


def dataset_exists(path, impl):
    if impl == 'mmap':
        return MMapIndexedDataset.exists(path)
    else:
        return IndexedDataset.exists(path)


def read_longs(f, n):
    a = np.empty(n, dtype=np.int64)
    f.readinto(a)
    return a


def write_longs(f, a):
    f.write(np.array(a, dtype=np.int64))


dtypes = {
    1: np.uint8,
    2: np.int8,
    3: np.int16,
    4: np.int32,
    5: np.int64,
    6: np.float,
    7: np.double,
    8: np.uint16
}


def code(dtype):
    for k in dtypes.keys():
        if dtypes[k] == dtype:
            return k
    raise ValueError(dtype)


def index_file_path(prefix_path):
    return prefix_path + '.idx'


def data_file_path(prefix_path):
    return prefix_path + '.bin'

Neel Kant's avatar
Neel Kant committed
118

119
120
121
122
def create_doc_idx(sizes):
    doc_idx = [0]
    for i, s in enumerate(sizes):
        if s == 0:
Neel Kant's avatar
Neel Kant committed
123
            doc_idx.append(i + 1)
124
    return doc_idx
125

Neel Kant's avatar
Neel Kant committed
126

127
128
129
130
class IndexedDataset(torch.utils.data.Dataset):
    """Loader for IndexedDataset"""
    _HDR_MAGIC = b'TNTIDX\x00\x00'

131
    def __init__(self, path):
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        super().__init__()
        self.path = path
        self.data_file = None
        self.read_index(path)

    def read_index(self, path):
        with open(index_file_path(path), 'rb') as f:
            magic = f.read(8)
            assert magic == self._HDR_MAGIC, (
                'Index file doesn\'t match expected format. '
                'Make sure that --dataset-impl is configured properly.'
            )
            version = f.read(8)
            assert struct.unpack('<Q', version) == (1,)
            code, self.element_size = struct.unpack('<QQ', f.read(16))
            self.dtype = dtypes[code]
            self._len, self.s = struct.unpack('<QQ', f.read(16))
149
            self.doc_count = struct.unpack('<Q', f.read(8))
150
151
152
            self.dim_offsets = read_longs(f, self._len + 1)
            self.data_offsets = read_longs(f, self._len + 1)
            self.sizes = read_longs(f, self.s)
153
            self.doc_idx = read_longs(f, self.doc_count)
154
155
156
157
158
159
160
161
162
163
164
165

    def read_data(self, path):
        self.data_file = open(data_file_path(path), 'rb', buffering=0)

    def check_index(self, i):
        if i < 0 or i >= self._len:
            raise IndexError('index out of range')

    def __del__(self):
        if self.data_file:
            self.data_file.close()

Neel Kant's avatar
Neel Kant committed
166
    # @lru_cache(maxsize=8)
167
    def __getitem__(self, idx):
168
169
        if not self.data_file:
            self.read_data(self.path)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        if isinstance(idx, int):
            i = idx
            self.check_index(i)
            tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]]
            a = np.empty(tensor_size, dtype=self.dtype)
            self.data_file.seek(self.data_offsets[i] * self.element_size)
            self.data_file.readinto(a)
            return a
        elif isinstance(idx, slice):
            start, stop, step = idx.indices(len(self))
            if step != 1:
                raise ValueError("Slices into indexed_dataset must be contiguous")
            sizes = self.sizes[self.dim_offsets[start]:self.dim_offsets[stop]]
            size = sum(sizes)
            a = np.empty(size, dtype=self.dtype)
            self.data_file.seek(self.data_offsets[start] * self.element_size)
            self.data_file.readinto(a)
            offsets = list(accumulate(sizes))
            sents = np.split(a, offsets[:-1])
            return sents
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

    def __len__(self):
        return self._len

    def num_tokens(self, index):
        return self.sizes[index]

    def size(self, index):
        return self.sizes[index]

    @staticmethod
    def exists(path):
        return (
            os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
        )

    @property
    def supports_prefetch(self):
        return False  # avoid prefetching to save memory


class IndexedCachedDataset(IndexedDataset):

213
214
    def __init__(self, path):
        super().__init__(path)
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        self.cache = None
        self.cache_index = {}

    @property
    def supports_prefetch(self):
        return True

    def prefetch(self, indices):
        if all(i in self.cache_index for i in indices):
            return
        if not self.data_file:
            self.read_data(self.path)
        indices = sorted(set(indices))
        total_size = 0
        for i in indices:
            total_size += self.data_offsets[i + 1] - self.data_offsets[i]
        self.cache = np.empty(total_size, dtype=self.dtype)
        ptx = 0
        self.cache_index.clear()
        for i in indices:
            self.cache_index[i] = ptx
            size = self.data_offsets[i + 1] - self.data_offsets[i]
            a = self.cache[ptx: ptx + size]
            self.data_file.seek(self.data_offsets[i] * self.element_size)
            self.data_file.readinto(a)
            ptx += size
        if self.data_file:
            # close and delete data file after prefetch so we can pickle
            self.data_file.close()
            self.data_file = None

Neel Kant's avatar
Neel Kant committed
246
    # @lru_cache(maxsize=8)
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    def __getitem__(self, idx):
        if isinstance(idx, int):
            i = idx
            self.check_index(i)
            tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]]
            a = np.empty(tensor_size, dtype=self.dtype)
            ptx = self.cache_index[i]
            np.copyto(a, self.cache[ptx: ptx + a.size])
            return a
        elif isinstance(idx, slice):
            # Hack just to make this work, can optimizer later if necessary
            sents = []
            for i in range(*idx.indices(len(self))):
                sents.append(self[i])
            return sents
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281


class IndexedDatasetBuilder(object):
    element_sizes = {
        np.uint8: 1,
        np.int8: 1,
        np.int16: 2,
        np.int32: 4,
        np.int64: 8,
        np.float: 4,
        np.double: 8
    }

    def __init__(self, out_file, dtype=np.int32):
        self.out_file = open(out_file, 'wb')
        self.dtype = dtype
        self.data_offsets = [0]
        self.dim_offsets = [0]
        self.sizes = []
        self.element_size = self.element_sizes[self.dtype]
282
        self.doc_idx = [0]
283
284

    def add_item(self, tensor):
285
        bytes = self.out_file.write(np.array(tensor.numpy(), dtype=self.dtype))
286
287
288
289
290
        self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
        for s in tensor.size():
            self.sizes.append(s)
        self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size()))

291
292
293
    def end_document(self):
        self.doc_idx.append(len(self.sizes))

294
295
296
297
    def merge_file_(self, another_file):
        index = IndexedDataset(another_file)
        assert index.dtype == self.dtype

298
299
        doc_offset = len(self.sizes)

300
        begin = self.data_offsets[-1]
301
302
        for data_offset in index.data_offsets[1:]:
            self.data_offsets.append(begin + data_offset)
303
        self.sizes.extend(index.sizes)
304

305
306
307
308
        begin = self.dim_offsets[-1]
        for dim_offset in index.dim_offsets[1:]:
            self.dim_offsets.append(begin + dim_offset)

309
310
        self.doc_idx.extend((doc_offset + index.doc_idx)[1:])

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        with open(data_file_path(another_file), 'rb') as f:
            while True:
                data = f.read(1024)
                if data:
                    self.out_file.write(data)
                else:
                    break

    def finalize(self, index_file):
        self.out_file.close()
        index = open(index_file, 'wb')
        index.write(b'TNTIDX\x00\x00')
        index.write(struct.pack('<Q', 1))
        index.write(struct.pack('<QQ', code(self.dtype), self.element_size))
        index.write(struct.pack('<QQ', len(self.data_offsets) - 1, len(self.sizes)))
326
        index.write(struct.pack('<Q', len(self.doc_idx)))
327
328
329
        write_longs(index, self.dim_offsets)
        write_longs(index, self.data_offsets)
        write_longs(index, self.sizes)
330
        write_longs(index, self.doc_idx)
331
332
333
334
335
        index.close()


def _warmup_mmap_file(path):
    with open(path, 'rb') as stream:
336
        while stream.read(100 * 1024 * 1024):
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
            pass


class MMapIndexedDataset(torch.utils.data.Dataset):
    class Index(object):
        _HDR_MAGIC = b'MMIDIDX\x00\x00'

        @classmethod
        def writer(cls, path, dtype):
            class _Writer(object):
                def __enter__(self):
                    self._file = open(path, 'wb')

                    self._file.write(cls._HDR_MAGIC)
                    self._file.write(struct.pack('<Q', 1))
                    self._file.write(struct.pack('<B', code(dtype)))

                    return self

                @staticmethod
                def _get_pointers(sizes):
                    dtype_size = dtype().itemsize
                    address = 0
                    pointers = []

                    for size in sizes:
                        pointers.append(address)
                        address += size * dtype_size

                    return pointers

368
                def write(self, sizes, doc_idx):
369
370
371
                    pointers = self._get_pointers(sizes)

                    self._file.write(struct.pack('<Q', len(sizes)))
372
                    self._file.write(struct.pack('<Q', len(doc_idx)))
373
374
375
376
377
378
379
380
381

                    sizes = np.array(sizes, dtype=np.int32)
                    self._file.write(sizes.tobytes(order='C'))
                    del sizes

                    pointers = np.array(pointers, dtype=np.int64)
                    self._file.write(pointers.tobytes(order='C'))
                    del pointers

382
383
384
                    doc_idx = np.array(doc_idx, dtype=np.int64)
                    self._file.write(doc_idx.tobytes(order='C'))

385
386
387
388
389
                def __exit__(self, exc_type, exc_val, exc_tb):
                    self._file.close()

            return _Writer()

390
        def __init__(self, path, skip_warmup=False):
391
392
393
394
395
396
397
398
399
400
401
402
403
404
            with open(path, 'rb') as stream:
                magic_test = stream.read(9)
                assert self._HDR_MAGIC == magic_test, (
                    'Index file doesn\'t match expected format. '
                    'Make sure that --dataset-impl is configured properly.'
                )
                version = struct.unpack('<Q', stream.read(8))
                assert (1,) == version

                dtype_code, = struct.unpack('<B', stream.read(1))
                self._dtype = dtypes[dtype_code]
                self._dtype_size = self._dtype().itemsize

                self._len = struct.unpack('<Q', stream.read(8))[0]
405
                self._doc_count = struct.unpack('<Q', stream.read(8))[0]
406
407
                offset = stream.tell()

408
            if not skip_warmup:
409
                print_rank_0("    warming up index mmap file...")
410
                _warmup_mmap_file(path)
411
412
413

            self._bin_buffer_mmap = np.memmap(path, mode='r', order='C')
            self._bin_buffer = memoryview(self._bin_buffer_mmap)
414
            print_rank_0("    reading sizes...")
Neel Kant's avatar
Neel Kant committed
415
416
417
418
419
            self._sizes = np.frombuffer(
                self._bin_buffer,
                dtype=np.int32,
                count=self._len,
                offset=offset)
420
            print_rank_0("    reading pointers...")
421
422
            self._pointers = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._len,
                                           offset=offset + self._sizes.nbytes)
423
            print_rank_0("    reading document index...")
424
425
            self._doc_idx = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._doc_count,
                                          offset=offset + self._sizes.nbytes + self._pointers.nbytes)
Neel Kant's avatar
Neel Kant committed
426

427
428
429
430
431
432
433
434
435
436
437
438
        def __del__(self):
            self._bin_buffer_mmap._mmap.close()
            del self._bin_buffer_mmap

        @property
        def dtype(self):
            return self._dtype

        @property
        def sizes(self):
            return self._sizes

439
440
441
442
        @property
        def doc_idx(self):
            return self._doc_idx

443
444
445
446
447
448
449
        @lru_cache(maxsize=8)
        def __getitem__(self, i):
            return self._pointers[i], self._sizes[i]

        def __len__(self):
            return self._len

450
    def __init__(self, path, skip_warmup=False):
451
452
453
454
455
456
        super().__init__()

        self._path = None
        self._index = None
        self._bin_buffer = None

457
        self._do_init(path, skip_warmup)
458
459
460
461
462

    def __getstate__(self):
        return self._path

    def __setstate__(self, state):
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
463
        self._do_init(state, skip_warmup=True)
464

465
    def _do_init(self, path, skip_warmup):
466
        self._path = path
467
        self._index = self.Index(index_file_path(self._path), skip_warmup)
468

469
        if not skip_warmup:
470
            print_rank_0("    warming up data mmap file...")
471
            _warmup_mmap_file(data_file_path(self._path))
472
        print_rank_0("    creating numpy buffer of mmap...")
473
        self._bin_buffer_mmap = np.memmap(data_file_path(self._path), mode='r', order='C')
474
        print_rank_0("    creating memory view of numpy buffer...")
475
476
477
478
479
480
481
482
483
484
        self._bin_buffer = memoryview(self._bin_buffer_mmap)

    def __del__(self):
        self._bin_buffer_mmap._mmap.close()
        del self._bin_buffer_mmap
        del self._index

    def __len__(self):
        return len(self._index)

Neel Kant's avatar
Neel Kant committed
485
    # @lru_cache(maxsize=8)
486
    def __getitem__(self, idx):
487
        if isinstance(idx, (int, np.integer)):
488
            ptr, size = self._index[idx]
489
490
            np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype,
                                     count=size, offset=ptr)
491
            return np_array
492
493
494
495
496
497
498
499
        elif isinstance(idx, slice):
            start, stop, step = idx.indices(len(self))
            if step != 1:
                raise ValueError("Slices into indexed_dataset must be contiguous")
            ptr = self._index._pointers[start]
            sizes = self._index._sizes[idx]
            offsets = list(accumulate(sizes))
            total_size = sum(sizes)
500
501
            np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype,
                                     count=total_size, offset=ptr)
502
503
            sents = np.split(np_array, offsets[:-1])
            return sents
504
505
        else:
            raise TypeError("Unexpected type received for idx: {}".format(type(idx)))
506

507
    def get(self, idx, offset=0, length=None):
508
509
510
511
512
        """ Retrieves a single item from the dataset with the option to only
        return a portion of the item.

        get(idx) is the same as [idx] but get() does not support slicing.
        """
513
514
515
516
517
518
519
520
        ptr, size = self._index[idx]
        if length is None:
            length = size - offset
        ptr += offset * np.dtype(self._index.dtype).itemsize
        np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype,
                                 count=length, offset=ptr)
        return np_array

521
522
523
524
    @property
    def sizes(self):
        return self._index.sizes

525
526
527
528
    @property
    def doc_idx(self):
        return self._index.doc_idx

529
530
531
532
533
534
    def get_doc_idx(self):
        return self._index._doc_idx

    def set_doc_idx(self, doc_idx_):
        self._index._doc_idx = doc_idx_

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    @property
    def supports_prefetch(self):
        return False

    @staticmethod
    def exists(path):
        return (
            os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
        )


class MMapIndexedDatasetBuilder(object):
    def __init__(self, out_file, dtype=np.int64):
        self._data_file = open(out_file, 'wb')
        self._dtype = dtype
        self._sizes = []
551
        self._doc_idx = [0]
552
553
554
555
556
557

    def add_item(self, tensor):
        np_array = np.array(tensor.numpy(), dtype=self._dtype)
        self._data_file.write(np_array.tobytes(order='C'))
        self._sizes.append(np_array.size)

558
559
560
561
562
563
    def add_doc(self, tensor, sizes):
        np_array = np.array(tensor, dtype=self._dtype)
        self._data_file.write(np_array.tobytes(order='C'))
        self._sizes.extend(sizes)
        self._doc_idx.append(len(self._sizes))

564
565
566
    def end_document(self):
        self._doc_idx.append(len(self._sizes))

567
568
569
570
571
    def merge_file_(self, another_file):
        # Concatenate index
        index = MMapIndexedDataset.Index(index_file_path(another_file))
        assert index.dtype == self._dtype

572
573
574
        offset = len(self._sizes)
        self._sizes.extend(index.sizes)
        self._doc_idx.extend((offset + index.doc_idx)[1:])
575
576
577
578
579
580
581
582
583

        # Concatenate data
        with open(data_file_path(another_file), 'rb') as f:
            shutil.copyfileobj(f, self._data_file)

    def finalize(self, index_file):
        self._data_file.close()

        with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
584
            index.write(self._sizes, self._doc_idx)