LlamaV2.cc 25.7 KB
Newer Older
AllentDan's avatar
AllentDan committed
1
/*
Li Zhang's avatar
Li Zhang committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 * Copyright (c) 2021, NAVER Corp.  Authored by CLOVA.
 * Copyright (c) 2022, SK Telecom Authored by A. Dialog
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

AllentDan's avatar
AllentDan committed
20
// Modified from
lvhan028's avatar
lvhan028 committed
21
22
23
24
25
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/models/multi_gpu_gpt/ParallelGpt.cc

#include "src/turbomind/models/llama/LlamaV2.h"
#include "src/turbomind/kernels/decoding_kernels.h"
#include "src/turbomind/kernels/gpt_kernels.h"
Chen Xin's avatar
Chen Xin committed
26
#include "src/turbomind/macro.h"
lvhan028's avatar
lvhan028 committed
27
28
29
30
#include "src/turbomind/models/llama/LlamaBatch.h"
#include "src/turbomind/models/llama/LlamaNcclGuard.h"
#include "src/turbomind/models/llama/LlamaWeight.h"
#include "src/turbomind/models/llama/Request.h"
Li Zhang's avatar
Li Zhang committed
31
#include "src/turbomind/models/llama/SequenceManager.h"
32
#include "src/turbomind/models/llama/llama_params.h"
lvhan028's avatar
lvhan028 committed
33
34
35
#include "src/turbomind/models/llama/llama_utils.h"
#include "src/turbomind/utils/Tensor.h"
#include "src/turbomind/utils/cuda_utils.h"
Li Zhang's avatar
Li Zhang committed
36
#include "src/turbomind/utils/logger.h"
Li Zhang's avatar
Li Zhang committed
37
38
39
40
#include <functional>
#include <memory>
#include <sstream>

lvhan028's avatar
lvhan028 committed
41
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
42
43
44

template<typename T>
LlamaV2<T>::LlamaV2(size_t                       head_num,
45
                    size_t                       kv_head_num,
Li Zhang's avatar
Li Zhang committed
46
47
48
49
                    size_t                       size_per_head,
                    size_t                       inter_size,
                    size_t                       num_layer,
                    size_t                       vocab_size,
50
                    const LlamaAttentionParams&  attn_params,
Li Zhang's avatar
Li Zhang committed
51
52
53
54
55
56
57
                    float                        norm_eps,
                    int                          max_batch_size,
                    int                          max_context_token_num,
                    int                          session_len,
                    int                          step_length,
                    int                          start_id,
                    int                          end_id,
Li Zhang's avatar
Li Zhang committed
58
59
                    float                        cache_max_block_count,
                    int                          cache_block_seq_len,
Li Zhang's avatar
Li Zhang committed
60
                    int                          cache_chunk_size,
61
                    int                          quant_policy,
Li Zhang's avatar
Li Zhang committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
                    bool                         use_context_fmha,
                    std::shared_ptr<SharedState> shared_state,
                    LlamaWeight<T>*              weights,
                    NcclParam                    tensor_para,
                    cudaStream_t                 stream,
                    cublasMMWrapper*             cublas_wrapper,
                    IAllocator*                  allocator,
                    bool                         is_free_buffer_after_forward,
                    cudaDeviceProp*              cuda_device_prop):
    head_num_(head_num),
    size_per_head_(size_per_head),
    inter_size_(inter_size),
    num_layer_(num_layer),
    vocab_size_(vocab_size),
Li Zhang's avatar
Li Zhang committed
76
    attn_params_(attn_params),
77
    vocab_size_padded_(vocab_size),
Li Zhang's avatar
Li Zhang committed
78
79
80
81
82
    rmsnorm_eps_(norm_eps),
    start_id_(start_id),
    end_id_(end_id),
    hidden_units_(head_num * size_per_head),
    local_head_num_(head_num / tensor_para.world_size_),
Li Zhang's avatar
Li Zhang committed
83
    local_kv_head_num_(head_num / tensor_para.world_size_),
Li Zhang's avatar
Li Zhang committed
84
85
86
87
88
89
90
91
92
93
94
95
    weights_(weights),
    tensor_para_(tensor_para),
    stream_(stream),
    cublas_wrapper_(cublas_wrapper),
    allocator_(allocator),
    is_free_buffer_after_forward_(is_free_buffer_after_forward),
    cuda_device_prop_(cuda_device_prop),
    debug_(isDebug()),
    step_length_(step_length),
    shared_state_(shared_state)

{
lvhan028's avatar
lvhan028 committed
96
97
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
    TM_LOG_INFO("NCCL group_id = %d", tensor_para_.group_id_);
Li Zhang's avatar
Li Zhang committed
98

99
100
    vocab_size_padded_ =
        (vocab_size_padded_ + tensor_para_.world_size_ - 1) / tensor_para_.world_size_ * tensor_para_.world_size_;
101

102
103
104
    size_t elem_bits = 0;
    if (quant_policy & QuantPolicy::kCacheKVInt8) {
        elem_bits = sizeof(int8_t) * 8;
AllentDan's avatar
AllentDan committed
105
106
    }
    else {
107
108
        elem_bits = sizeof(T) * 8;
    }
109
110
111

    const size_t local_kv_head_num = kv_head_num / tensor_para.world_size_;

Li Zhang's avatar
Li Zhang committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    auto sequence_manager = std::make_unique<SequenceManager>(num_layer,
                                                              local_kv_head_num,
                                                              size_per_head_,
                                                              cache_block_seq_len,
                                                              cache_max_block_count,
                                                              cache_chunk_size,
                                                              elem_bits,
                                                              tensor_para_.rank_,
                                                              allocator);

    const size_t max_session_len = sequence_manager->max_block_count() * cache_block_seq_len;
    if (max_session_len < session_len) {
        if (tensor_para.rank_ == 0) {
            TM_LOG_WARNING("No enough blocks for `session_len` (%d), `session_len` truncated to %d.",
                           session_len,
                           max_session_len);
        }
        session_len = max_session_len;
    }

    batch_ = std::make_unique<LlamaBatch<T>>(
        max_batch_size, max_context_token_num, session_len, std::move(sequence_manager), this);

    initialize(attn_params, kv_head_num, use_context_fmha, cache_block_seq_len, quant_policy);

    /// TODO: decouple Llama model and batch inference
    batch_->Start();
Li Zhang's avatar
Li Zhang committed
139
140
141
142
143
144
145
146
147
148
149
}

template<typename T>
LlamaV2<T>::~LlamaV2()
{
    delete decoder_;
    delete dynamic_decode_layer_;
    delete context_decoder_;
}

template<typename T>
150
151
152
void LlamaV2<T>::initialize(const LlamaAttentionParams& attn_params,
                            size_t                      kv_head_num,
                            bool                        use_context_fmha,
Li Zhang's avatar
Li Zhang committed
153
                            int                         cache_block_seq_len,
154
                            int                         quant_policy)
Li Zhang's avatar
Li Zhang committed
155
{
lvhan028's avatar
lvhan028 committed
156
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
157
158

    context_decoder_ = new LlamaContextDecoder<T>(head_num_,
159
                                                  kv_head_num,
Li Zhang's avatar
Li Zhang committed
160
161
162
                                                  size_per_head_,
                                                  inter_size_,
                                                  num_layer_,
163
                                                  attn_params,
Li Zhang's avatar
Li Zhang committed
164
165
166
167
168
169
                                                  rmsnorm_eps_,
                                                  tensor_para_,
                                                  stream_,
                                                  cublas_wrapper_,
                                                  allocator_,
                                                  is_free_buffer_after_forward_,
170
                                                  use_context_fmha,
Li Zhang's avatar
Li Zhang committed
171
                                                  cache_block_seq_len,
172
                                                  quant_policy);
Li Zhang's avatar
Li Zhang committed
173
174

    decoder_ = new LlamaDecoder<T>(head_num_,
175
                                   kv_head_num,
Li Zhang's avatar
Li Zhang committed
176
177
178
                                   size_per_head_,
                                   inter_size_,
                                   num_layer_,
179
                                   attn_params,
Li Zhang's avatar
Li Zhang committed
180
181
182
183
184
                                   rmsnorm_eps_,
                                   tensor_para_,
                                   stream_,
                                   cublas_wrapper_,
                                   allocator_,
185
                                   is_free_buffer_after_forward_,
Li Zhang's avatar
Li Zhang committed
186
                                   cache_block_seq_len,
187
                                   quant_policy);
Li Zhang's avatar
Li Zhang committed
188
189

    dynamic_decode_layer_ = new DynamicDecodeLayer<float>(vocab_size_,
190
                                                          vocab_size_padded_,
191
                                                          0,  // end_id, deprecated
Li Zhang's avatar
Li Zhang committed
192
193
194
195
196
197
198
199
200
201
                                                          stream_,
                                                          cublas_wrapper_,
                                                          allocator_,
                                                          is_free_buffer_after_forward_,
                                                          cuda_device_prop_);
}

template<typename T>
void LlamaV2<T>::embeddingLookup(T* embeddings, const int* token_ids_buf, int batch_size, int step)
{
Li Zhang's avatar
Li Zhang committed
202
    NvtxScope scope("embeddingLookup");
lvhan028's avatar
lvhan028 committed
203
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    // ! This kernel can't be used in context decoding
    invokeEmbeddingLookupPosEncodingPadCount(embeddings,
                                             weights_->pre_decoder_embedding_table,
                                             static_cast<T*>(nullptr),  // position encoding
                                             token_ids_buf,
                                             static_cast<int*>(nullptr),  // padding count, not used w/o pos-code
                                             batch_size,
                                             hidden_units_,
                                             static_cast<T>(1.),  // scale
                                             step,                // step, used int index into output_ids_buf_
                                             batch_size,          // token_num
                                             0,                   // ite
                                             stream_);
    sync_check_cuda_error();
}

template<typename T>
q.yao's avatar
q.yao committed
221
void LlamaV2<T>::contextDecode(T*           decoder_output,
Li Zhang's avatar
Li Zhang committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
                               uintptr_t*   k_cache_ptr,
                               uintptr_t*   v_cache_ptr,
                               void**       tmp_k_ptrs,
                               void**       tmp_v_ptrs,
                               T*           context_decoder_input_buf,
                               T*           context_decoder_output_buf,
                               const int*   input_ids,
                               const int*   input_length,
                               const int*   context_length,
                               const int*   cu_block_counts,
                               const float* rope_theta,
                               size_t       token_num,
                               size_t       max_input_len,
                               size_t       max_context_len,
                               size_t       session_len,
                               size_t       batch_size)
Li Zhang's avatar
Li Zhang committed
238
{
lvhan028's avatar
lvhan028 committed
239
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
240
241

    if (tensor_para_.rank_ == 0) {
lvhan028's avatar
lvhan028 committed
242
        TM_LOG_INFO("context decoding start");
Li Zhang's avatar
Li Zhang committed
243
244
245
246
247
248
249
250
    }

    invokeInputIdsEmbeddingLookupPosEncoding(context_decoder_input_buf,
                                             nullptr,  // processed somewhere else
                                             weights_->pre_decoder_embedding_table,
                                             static_cast<T*>(nullptr),
                                             pPromptTuningParam<T>{},
                                             input_ids,
AllentDan's avatar
AllentDan committed
251
                                             0,  // only used for position encoding
Li Zhang's avatar
Li Zhang committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
                                             token_num,
                                             token_num,
                                             1,
                                             hidden_units_,
                                             stream_);
    sync_check_cuda_error();

    const auto dtype = getTensorType<T>();
    const auto bsz   = batch_size;

    const int max_q_len   = max_input_len;
    const int max_kv_len  = max_context_len;
    const int max_seq_len = session_len;

    std::unordered_map<std::string, Tensor> decoder_input_tensors{
        {"decoder_input", {MEMORY_GPU, dtype, {token_num, hidden_units_}, context_decoder_input_buf}},
        {"output_norm_weight", {MEMORY_GPU, dtype, {hidden_units_}, weights_->output_norm_weight}},
        {"input_lengths", {MEMORY_GPU, TYPE_INT32, {bsz}, input_length}},
        {"context_lengths", {MEMORY_GPU, TYPE_INT32, {bsz}, context_length}},
        {"max_q_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_q_len}},
        {"max_kv_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_kv_len}},
        {"max_seq_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_seq_len}},
Li Zhang's avatar
Li Zhang committed
274
275
        {"rope_theta", {MEMORY_GPU, TYPE_FP32, {hidden_units_}, rope_theta}},
        {"cu_block_counts", {MEMORY_GPU, TYPE_INT32, {batch_size}, cu_block_counts}}};
Li Zhang's avatar
Li Zhang committed
276
277

    std::unordered_map<std::string, Tensor> decoder_output_tensors{
278
        {"decoder_output", {MEMORY_GPU, dtype, {token_num, hidden_units_}, context_decoder_output_buf}},
Li Zhang's avatar
Li Zhang committed
279
280
        {"key_cache", {MEMORY_GPU, TYPE_UINT64, {bsz}, k_cache_ptr}},
        {"value_cache", {MEMORY_GPU, TYPE_UINT64, {bsz}, v_cache_ptr}},
Li Zhang's avatar
Li Zhang committed
281
282
        {"tmp_k", {MEMORY_GPU, TYPE_UINT64, {bsz}, tmp_k_ptrs}},
        {"tmp_v", {MEMORY_GPU, TYPE_UINT64, {bsz}, tmp_v_ptrs}},
q.yao's avatar
q.yao committed
283
        {"last_token_hidden_units", {MEMORY_GPU, dtype, {bsz, hidden_units_}, decoder_output}}};
Li Zhang's avatar
Li Zhang committed
284
285
286
287

    context_decoder_->forward(&decoder_output_tensors, &decoder_input_tensors, &weights_->decoder_layer_weights);

    if (tensor_para_.rank_ == 0) {
lvhan028's avatar
lvhan028 committed
288
        TM_LOG_INFO("context decoding end");
Li Zhang's avatar
Li Zhang committed
289
290
291
292
    }
}

template<typename T>
Li Zhang's avatar
Li Zhang committed
293
294
295
296
297
298
299
300
301
302
303
304
305
void LlamaV2<T>::decoderForward(T*           decoder_output,
                                uintptr_t*   k_cache_ptr,
                                uintptr_t*   v_cache_ptr,
                                T*           decoder_input,
                                const int*   sequence_length,
                                const bool*  finished,
                                const int*   cu_block_counts,
                                const float* rope_theta,
                                int          step,
                                int          ite,
                                int          sum_seq_len,
                                int          max_seq_len,
                                size_t       batch_size)
Li Zhang's avatar
Li Zhang committed
306
{
lvhan028's avatar
lvhan028 committed
307
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
308

Li Zhang's avatar
Li Zhang committed
309
    const auto dtype = getTensorType<T>();
Li Zhang's avatar
Li Zhang committed
310
311
312
313
314
315

    // max_input_length is not used w/o linear_bias_slopes
    // sequence_lengths_ will be incremented in dynamic decode
    std::unordered_map<std::string, Tensor> decoder_input_tensors{
        {"decoder_input", {MEMORY_GPU, dtype, {batch_size, hidden_units_}, decoder_input}},
        {"sequence_lengths", {MEMORY_GPU, TYPE_INT32, {batch_size}, sequence_length}},
Li Zhang's avatar
Li Zhang committed
316
317
        {"cu_block_counts", {MEMORY_GPU, TYPE_INT32, {batch_size}, cu_block_counts}},
        {"sum_seq_len", {MEMORY_CPU, TYPE_INT32, {1}, &sum_seq_len}},
Li Zhang's avatar
Li Zhang committed
318
319
320
        {"max_seq_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_seq_len}},
        {"finished", {MEMORY_GPU, TYPE_BOOL, {batch_size}, finished}},
        {"output_norm_weight", {MEMORY_GPU, dtype, {hidden_units_}, weights_->output_norm_weight}},
Li Zhang's avatar
Li Zhang committed
321
        {"rope_theta", {MEMORY_GPU, TYPE_FP32, {batch_size}, rope_theta}},
Li Zhang's avatar
Li Zhang committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
        {"step", {MEMORY_CPU, TYPE_INT32, {1}, &step}},
        {"ite", {MEMORY_CPU, TYPE_INT32, {1}, &ite}},
    };

    // LOG(ERROR) << key_cache_ << " " << value_cache_;
    std::unordered_map<std::string, Tensor> decoder_output_tensors{
        {"decoder_output", {MEMORY_GPU, dtype, {batch_size, hidden_units_}, decoder_output}},
        {"key_cache", {MEMORY_GPU, TYPE_UINT64, {batch_size}, k_cache_ptr}},
        {"value_cache", {MEMORY_GPU, TYPE_UINT64, {batch_size}, v_cache_ptr}},
    };

    decoder_->forward(&decoder_output_tensors, &decoder_input_tensors, &weights_->decoder_layer_weights);
}

template<typename T>
void LlamaV2<T>::postDecodeEmbedding(float* logits, float* local_logits, const T* decoder_output, int batch_size)
{
Li Zhang's avatar
Li Zhang committed
339
    NvtxScope scope("postDecodeEmbedding");
lvhan028's avatar
lvhan028 committed
340
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    cudaDataType_t data_type = getCudaDataType<T>();
    float          alpha     = 1.f;
    float          beta      = 0.f;
    if (tensor_para_.world_size_ == 1) {
        cublas_wrapper_->Gemm(CUBLAS_OP_T,
                              CUBLAS_OP_N,
                              vocab_size_,  // n
                              batch_size,
                              hidden_units_,  // k
                              &alpha,
                              weights_->post_decoder_embedding_kernel,
                              data_type,
                              hidden_units_,  // k
                              decoder_output,
                              data_type,
                              hidden_units_,  // k
                              &beta,
                              logits,
                              CUDA_R_32F,
                              vocab_size_,  // n
                              CUDA_R_32F,
                              cublasGemmAlgo_t(-1));
    }
    else {
365
366
        FT_CHECK(vocab_size_padded_ % tensor_para_.world_size_ == 0);
        const size_t local_vocab_size = vocab_size_padded_ / tensor_para_.world_size_;
Li Zhang's avatar
Li Zhang committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        cublas_wrapper_->Gemm(CUBLAS_OP_T,
                              CUBLAS_OP_N,
                              local_vocab_size,  // n
                              batch_size,
                              hidden_units_,  // k
                              &alpha,
                              weights_->post_decoder_embedding_kernel
                                  + tensor_para_.rank_ * local_vocab_size * hidden_units_,
                              data_type,
                              hidden_units_,  // k
                              decoder_output,
                              data_type,
                              hidden_units_,  // k
                              &beta,
                              local_logits + tensor_para_.rank_ * batch_size * local_vocab_size,
                              CUDA_R_32F,
                              local_vocab_size,  // n
                              CUDA_R_32F,
                              cublasGemmAlgo_t(-1));
        {
            NcclGuard nccl_guard(tensor_para_, stream_);
            ftNcclAllGather(local_logits,                   // send_buf
                            local_logits,                   // recv_buf
                            batch_size * local_vocab_size,  // data_size
                            tensor_para_.rank_,
                            tensor_para_,
                            stream_);
        }
        invokeTransposeAxis01(logits, local_logits, tensor_para_.world_size_, batch_size, local_vocab_size, stream_);
        sync_check_cuda_error();
    }
}

template<typename T>
void LlamaV2<T>::dynamicDecode(int*            token_ids,
                               bool*           finished,
                               int*            sequence_length,
                               bool*           should_stop,
Li Zhang's avatar
Li Zhang committed
405
                               curandState_t*  curand_state,
Li Zhang's avatar
Li Zhang committed
406
407
408
409
410
411
412
413
414
415
416
417
                               TensorMap*      inputs,
                               TensorMap*      outputs,
                               const float*    logits,
                               const uint32_t* seq_limit_len,
                               const int*      context_length,
                               const int*      end_ids,
                               int             step,
                               int             ite,
                               size_t          max_context_len,
                               size_t          token_ids_len,
                               size_t          batch_size)
{
Li Zhang's avatar
Li Zhang committed
418
    NvtxScope scope("dynamicDecode");
lvhan028's avatar
lvhan028 committed
419
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
420
421
422
    int local_batch_size = (int)batch_size;

    std::unordered_map<std::string, Tensor> dynamic_decode_input_tensors{
423
        {"logits", {MEMORY_GPU, TYPE_FP32, {batch_size, (size_t)1, vocab_size_padded_}, logits}},
Li Zhang's avatar
Li Zhang committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        {"step", {MEMORY_CPU, TYPE_INT32, {1}, &step}},
        {"max_input_length", {MEMORY_CPU, TYPE_INT32, {1}, &max_context_len}},
        {"sequence_limit_length", {MEMORY_GPU, TYPE_UINT32, {batch_size}, seq_limit_len}},
        {"input_lengths", {MEMORY_GPU, TYPE_INT32, {batch_size, 1}, context_length}},
        {"ite", {MEMORY_CPU, TYPE_UINT32, {1}, &ite}},
        {"end_id", {MEMORY_GPU, TYPE_INT32, {batch_size}, end_ids}},
        {"local_batch_size", {MEMORY_CPU, TYPE_INT32, {1}, &local_batch_size}},
    };

    const std::vector<std::string> optional_inputs{"stop_words_list",
                                                   "bad_words_list",
                                                   "runtime_top_k",
                                                   "runtime_top_p",
                                                   "temperature",
                                                   "repetition_penalty",
                                                   "random_seed"};
    for (const auto& key : optional_inputs) {
        if (inputs->isExist(key)) {
            dynamic_decode_input_tensors.insert({key, inputs->at(key)});
        }
    }

    std::unordered_map<std::string, Tensor> dynamic_decode_output_tensors{
        {"output_ids", {MEMORY_GPU, TYPE_INT32, {token_ids_len, batch_size, 1U}, token_ids}},
        {"finished", {MEMORY_GPU, TYPE_BOOL, {batch_size}, finished}},
        {"sequence_length", {MEMORY_GPU, TYPE_INT32, {batch_size}, sequence_length}},
Li Zhang's avatar
Li Zhang committed
450
451
        {"should_stop", {MEMORY_CPU, TYPE_BOOL, {1}, should_stop}},
        {"curand_state", {MEMORY_GPU, TYPE_VOID, {batch_size}, curand_state}}};
Li Zhang's avatar
Li Zhang committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

    const std::vector<std::string> optional_outputs{"cum_log_probs", "output_log_probs"};
    for (const auto& key : optional_outputs) {
        if (outputs->isExist(key)) {
            dynamic_decode_output_tensors.insert({key, outputs->at(key)});
        }
    }

    dynamic_decode_layer_->forward(&dynamic_decode_output_tensors, &dynamic_decode_input_tensors);
}

static inline Tensor slice(const Tensor& tensor, int index)
{
    auto shape = tensor.shape;
    if (shape.at(0) == 1) {
        return tensor;
    }
    shape[0]          = 1;
    const auto offset = std::accumulate(shape.begin(), shape.end(), (size_t)index, std::multiplies<>{});
    return tensor.slice(shape, offset);
}

// ! implicit conversion from `unordered_map` to `TensorMap` drops 0-sized tensors
static inline TensorMap slice(const std::unordered_map<std::string, Tensor>& src, int index)
{
    TensorMap dst;
    for (const auto& kv : src) {
        dst.insert({kv.first, slice(kv.second, index)});
    }
    return dst;
}

template<typename T>
void LlamaV2<T>::forward(std::unordered_map<std::string, Tensor>*       outputs,
                         const std::unordered_map<std::string, Tensor>* inputs,
                         Control                                        control)
{
    if (debug_) {
        if (tensor_para_.rank_ == 0) {
            for (const auto& kv : *inputs) {
lvhan028's avatar
lvhan028 committed
492
                TM_LOG_INFO("[forward][rank=%d] INPUT: %s", (int)tensor_para_.rank_, format(kv).c_str());
Li Zhang's avatar
Li Zhang committed
493
494
            }
            for (const auto& kv : *outputs) {
lvhan028's avatar
lvhan028 committed
495
                TM_LOG_INFO("[forward][rank=%d] OUTPUT: %s", (int)tensor_para_.rank_, format(kv).c_str());
Li Zhang's avatar
Li Zhang committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
            }
        }
    }

    const int batch_size = outputs->at("output_ids").shape[0];

    const auto rank = tensor_para_.rank_;

    std::vector<std::shared_ptr<Request>> requests(batch_size);

    // rank-0 allocates all requests for the batch
    if (rank == 0) {
        for (int i = 0; i < batch_size; ++i) {
            requests[i] = std::make_shared<Request>();
            requests[i]->inputs.resize(tensor_para_.world_size_);
            requests[i]->outputs.resize(tensor_para_.world_size_);
        }
        control.comm->setSharedObject(&requests);
    }

    control.comm->barrier();

    if (rank != 0) {
        requests = *(std::vector<std::shared_ptr<Request>>*)control.comm->getSharedObject();
    }

    for (int i = 0; i < batch_size; ++i) {
        auto& r = requests[i];

        r->inputs[rank]  = slice(*inputs, i);
        r->outputs[rank] = slice(*outputs, i);

        if (rank == 0) {
            r->id         = r->inputs[rank].getVal<uint64_t>("CORRID", i);
            r->start_flag = r->inputs[rank].getVal<int>("START", 1);
            r->end_flag   = r->inputs[rank].getVal<int>("END", 1);
            r->stop_flag  = r->inputs[rank].getVal<int>("STOP", 0);
            r->stream_cb  = control.callback;
        }
    }

    control.comm->barrier();

    // rank-0 now takes the ownership of `requests`
    // rank-0 submits the tasks and wait for finish
    std::vector<int> error_codes;
    bool             has_error = 0;
    if (rank == 0) {
lvhan028's avatar
lvhan028 committed
544
        TM_LOG_INFO("[forward] Enqueue requests");
Li Zhang's avatar
Li Zhang committed
545
546
547
548
549
550

        std::vector<uint64_t> ids;
        for (const auto& r : requests) {
            ids.push_back(r->id);
        }

Li Zhang's avatar
Li Zhang committed
551
552
        auto futures = shared_state_->request_queue.enqueue(std::move(requests));

Li Zhang's avatar
Li Zhang committed
553
554
        FT_CHECK_WITH_INFO(ids.size() == futures.size(), "check failed");

lvhan028's avatar
lvhan028 committed
555
        TM_LOG_INFO("[forward] Wait for requests to complete ...");
Li Zhang's avatar
Li Zhang committed
556
557
558

        for (int i = 0; i < futures.size(); ++i) {
            auto ec = futures[i].get();
Li Zhang's avatar
Li Zhang committed
559
560
561
562
            error_codes.push_back(ec);
            if (ec) {
                has_error = true;
            }
Li Zhang's avatar
Li Zhang committed
563
            TM_LOG_INFO("[forward] Request complete for %ld, code %d", (long)ids[i], (int)ec);
Li Zhang's avatar
Li Zhang committed
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
        }
    }

    // prevents request tensors being freed before the batch completes
    control.comm->barrier();

    if (rank == 0 && has_error) {
        std::stringstream ss;
        for (int i = 0; i < error_codes.size(); ++i) {
            ss << (i ? "" : " ") << error_codes[i];
        }
        throw std::runtime_error(ss.str());
    }
}

template class LlamaV2<half>;
template class LlamaV2<float>;

lvhan028's avatar
lvhan028 committed
582
}  // namespace turbomind