LlamaV2.cc 25.7 KB
Newer Older
AllentDan's avatar
AllentDan committed
1
/*
Li Zhang's avatar
Li Zhang committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 * Copyright (c) 2021, NAVER Corp.  Authored by CLOVA.
 * Copyright (c) 2022, SK Telecom Authored by A. Dialog
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

AllentDan's avatar
AllentDan committed
20
// Modified from
lvhan028's avatar
lvhan028 committed
21
22
23
24
25
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/models/multi_gpu_gpt/ParallelGpt.cc

#include "src/turbomind/models/llama/LlamaV2.h"
#include "src/turbomind/kernels/decoding_kernels.h"
#include "src/turbomind/kernels/gpt_kernels.h"
Chen Xin's avatar
Chen Xin committed
26
#include "src/turbomind/macro.h"
lvhan028's avatar
lvhan028 committed
27
28
29
30
#include "src/turbomind/models/llama/LlamaBatch.h"
#include "src/turbomind/models/llama/LlamaNcclGuard.h"
#include "src/turbomind/models/llama/LlamaWeight.h"
#include "src/turbomind/models/llama/Request.h"
Li Zhang's avatar
Li Zhang committed
31
#include "src/turbomind/models/llama/SequenceManager.h"
32
#include "src/turbomind/models/llama/llama_params.h"
lvhan028's avatar
lvhan028 committed
33
34
35
#include "src/turbomind/models/llama/llama_utils.h"
#include "src/turbomind/utils/Tensor.h"
#include "src/turbomind/utils/cuda_utils.h"
Li Zhang's avatar
Li Zhang committed
36
#include "src/turbomind/utils/logger.h"
Li Zhang's avatar
Li Zhang committed
37
38
39
40
#include <functional>
#include <memory>
#include <sstream>

lvhan028's avatar
lvhan028 committed
41
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
42
43
44

template<typename T>
LlamaV2<T>::LlamaV2(size_t                       head_num,
45
                    size_t                       kv_head_num,
Li Zhang's avatar
Li Zhang committed
46
47
48
49
                    size_t                       size_per_head,
                    size_t                       inter_size,
                    size_t                       num_layer,
                    size_t                       vocab_size,
50
                    const LlamaAttentionParams&  attn_params,
Li Zhang's avatar
Li Zhang committed
51
52
53
54
55
56
57
                    float                        norm_eps,
                    int                          max_batch_size,
                    int                          max_context_token_num,
                    int                          session_len,
                    int                          step_length,
                    int                          start_id,
                    int                          end_id,
Li Zhang's avatar
Li Zhang committed
58
59
                    float                        cache_max_block_count,
                    int                          cache_block_seq_len,
Li Zhang's avatar
Li Zhang committed
60
                    int                          cache_chunk_size,
61
                    int                          quant_policy,
Li Zhang's avatar
Li Zhang committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
                    bool                         use_context_fmha,
                    std::shared_ptr<SharedState> shared_state,
                    LlamaWeight<T>*              weights,
                    NcclParam                    tensor_para,
                    cudaStream_t                 stream,
                    cublasMMWrapper*             cublas_wrapper,
                    IAllocator*                  allocator,
                    bool                         is_free_buffer_after_forward,
                    cudaDeviceProp*              cuda_device_prop):
    head_num_(head_num),
    size_per_head_(size_per_head),
    inter_size_(inter_size),
    num_layer_(num_layer),
    vocab_size_(vocab_size),
Li Zhang's avatar
Li Zhang committed
76
    attn_params_(attn_params),
77
    vocab_size_padded_(vocab_size),
Li Zhang's avatar
Li Zhang committed
78
79
80
81
82
    rmsnorm_eps_(norm_eps),
    start_id_(start_id),
    end_id_(end_id),
    hidden_units_(head_num * size_per_head),
    local_head_num_(head_num / tensor_para.world_size_),
Li Zhang's avatar
Li Zhang committed
83
    local_kv_head_num_(head_num / tensor_para.world_size_),
Li Zhang's avatar
Li Zhang committed
84
85
86
87
88
89
90
91
92
93
94
95
    weights_(weights),
    tensor_para_(tensor_para),
    stream_(stream),
    cublas_wrapper_(cublas_wrapper),
    allocator_(allocator),
    is_free_buffer_after_forward_(is_free_buffer_after_forward),
    cuda_device_prop_(cuda_device_prop),
    debug_(isDebug()),
    step_length_(step_length),
    shared_state_(shared_state)

{
lvhan028's avatar
lvhan028 committed
96
97
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
    TM_LOG_INFO("NCCL group_id = %d", tensor_para_.group_id_);
Li Zhang's avatar
Li Zhang committed
98

99
100
    vocab_size_padded_ =
        (vocab_size_padded_ + tensor_para_.world_size_ - 1) / tensor_para_.world_size_ * tensor_para_.world_size_;
101

102
103
104
105
    size_t elem_bits = 0;
    if (quant_policy & QuantPolicy::kCacheKVInt8) {
        elem_bits = sizeof(int8_t) * 8;
        if (use_context_fmha) {
lvhan028's avatar
lvhan028 committed
106
            TM_LOG_ERROR("use_context_fmha not support int8");
107
108
            assert(0);
        }
AllentDan's avatar
AllentDan committed
109
110
    }
    else {
111
112
        elem_bits = sizeof(T) * 8;
    }
113
114
115

    const size_t local_kv_head_num = kv_head_num / tensor_para.world_size_;

Li Zhang's avatar
Li Zhang committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    auto sequence_manager = std::make_unique<SequenceManager>(num_layer,
                                                              local_kv_head_num,
                                                              size_per_head_,
                                                              cache_block_seq_len,
                                                              cache_max_block_count,
                                                              cache_chunk_size,
                                                              elem_bits,
                                                              tensor_para_.rank_,
                                                              allocator);

    const size_t max_session_len = sequence_manager->max_block_count() * cache_block_seq_len;
    if (max_session_len < session_len) {
        if (tensor_para.rank_ == 0) {
            TM_LOG_WARNING("No enough blocks for `session_len` (%d), `session_len` truncated to %d.",
                           session_len,
                           max_session_len);
        }
        session_len = max_session_len;
    }

    batch_ = std::make_unique<LlamaBatch<T>>(
        max_batch_size, max_context_token_num, session_len, std::move(sequence_manager), this);

    initialize(attn_params, kv_head_num, use_context_fmha, cache_block_seq_len, quant_policy);

    /// TODO: decouple Llama model and batch inference
    batch_->Start();
Li Zhang's avatar
Li Zhang committed
143
144
145
146
147
148
149
150
151
152
153
}

template<typename T>
LlamaV2<T>::~LlamaV2()
{
    delete decoder_;
    delete dynamic_decode_layer_;
    delete context_decoder_;
}

template<typename T>
154
155
156
void LlamaV2<T>::initialize(const LlamaAttentionParams& attn_params,
                            size_t                      kv_head_num,
                            bool                        use_context_fmha,
Li Zhang's avatar
Li Zhang committed
157
                            int                         cache_block_seq_len,
158
                            int                         quant_policy)
Li Zhang's avatar
Li Zhang committed
159
{
lvhan028's avatar
lvhan028 committed
160
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
161
162

    context_decoder_ = new LlamaContextDecoder<T>(head_num_,
163
                                                  kv_head_num,
Li Zhang's avatar
Li Zhang committed
164
165
166
                                                  size_per_head_,
                                                  inter_size_,
                                                  num_layer_,
167
                                                  attn_params,
Li Zhang's avatar
Li Zhang committed
168
169
170
171
172
173
                                                  rmsnorm_eps_,
                                                  tensor_para_,
                                                  stream_,
                                                  cublas_wrapper_,
                                                  allocator_,
                                                  is_free_buffer_after_forward_,
174
                                                  use_context_fmha,
Li Zhang's avatar
Li Zhang committed
175
                                                  cache_block_seq_len,
176
                                                  quant_policy);
Li Zhang's avatar
Li Zhang committed
177
178

    decoder_ = new LlamaDecoder<T>(head_num_,
179
                                   kv_head_num,
Li Zhang's avatar
Li Zhang committed
180
181
182
                                   size_per_head_,
                                   inter_size_,
                                   num_layer_,
183
                                   attn_params,
Li Zhang's avatar
Li Zhang committed
184
185
186
187
188
                                   rmsnorm_eps_,
                                   tensor_para_,
                                   stream_,
                                   cublas_wrapper_,
                                   allocator_,
189
                                   is_free_buffer_after_forward_,
Li Zhang's avatar
Li Zhang committed
190
                                   cache_block_seq_len,
191
                                   quant_policy);
Li Zhang's avatar
Li Zhang committed
192
193

    dynamic_decode_layer_ = new DynamicDecodeLayer<float>(vocab_size_,
194
                                                          vocab_size_padded_,
195
                                                          0,  // end_id, deprecated
Li Zhang's avatar
Li Zhang committed
196
197
198
199
200
201
202
203
204
205
                                                          stream_,
                                                          cublas_wrapper_,
                                                          allocator_,
                                                          is_free_buffer_after_forward_,
                                                          cuda_device_prop_);
}

template<typename T>
void LlamaV2<T>::embeddingLookup(T* embeddings, const int* token_ids_buf, int batch_size, int step)
{
Li Zhang's avatar
Li Zhang committed
206
    NvtxScope scope("embeddingLookup");
lvhan028's avatar
lvhan028 committed
207
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    // ! This kernel can't be used in context decoding
    invokeEmbeddingLookupPosEncodingPadCount(embeddings,
                                             weights_->pre_decoder_embedding_table,
                                             static_cast<T*>(nullptr),  // position encoding
                                             token_ids_buf,
                                             static_cast<int*>(nullptr),  // padding count, not used w/o pos-code
                                             batch_size,
                                             hidden_units_,
                                             static_cast<T>(1.),  // scale
                                             step,                // step, used int index into output_ids_buf_
                                             batch_size,          // token_num
                                             0,                   // ite
                                             stream_);
    sync_check_cuda_error();
}

template<typename T>
Li Zhang's avatar
Li Zhang committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
void LlamaV2<T>::contextDecode(T*           deocder_output,
                               uintptr_t*   k_cache_ptr,
                               uintptr_t*   v_cache_ptr,
                               void**       tmp_k_ptrs,
                               void**       tmp_v_ptrs,
                               T*           context_decoder_input_buf,
                               T*           context_decoder_output_buf,
                               const int*   input_ids,
                               const int*   input_length,
                               const int*   context_length,
                               const int*   cu_block_counts,
                               const float* rope_theta,
                               size_t       token_num,
                               size_t       max_input_len,
                               size_t       max_context_len,
                               size_t       session_len,
                               size_t       batch_size)
Li Zhang's avatar
Li Zhang committed
242
{
lvhan028's avatar
lvhan028 committed
243
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
244
245

    if (tensor_para_.rank_ == 0) {
lvhan028's avatar
lvhan028 committed
246
        TM_LOG_INFO("context decoding start");
Li Zhang's avatar
Li Zhang committed
247
248
249
250
251
252
253
254
    }

    invokeInputIdsEmbeddingLookupPosEncoding(context_decoder_input_buf,
                                             nullptr,  // processed somewhere else
                                             weights_->pre_decoder_embedding_table,
                                             static_cast<T*>(nullptr),
                                             pPromptTuningParam<T>{},
                                             input_ids,
AllentDan's avatar
AllentDan committed
255
                                             0,  // only used for position encoding
Li Zhang's avatar
Li Zhang committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
                                             token_num,
                                             token_num,
                                             1,
                                             hidden_units_,
                                             stream_);
    sync_check_cuda_error();

    const auto dtype = getTensorType<T>();
    const auto bsz   = batch_size;

    const int max_q_len   = max_input_len;
    const int max_kv_len  = max_context_len;
    const int max_seq_len = session_len;

    std::unordered_map<std::string, Tensor> decoder_input_tensors{
        {"decoder_input", {MEMORY_GPU, dtype, {token_num, hidden_units_}, context_decoder_input_buf}},
        {"output_norm_weight", {MEMORY_GPU, dtype, {hidden_units_}, weights_->output_norm_weight}},
        {"input_lengths", {MEMORY_GPU, TYPE_INT32, {bsz}, input_length}},
        {"context_lengths", {MEMORY_GPU, TYPE_INT32, {bsz}, context_length}},
        {"max_q_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_q_len}},
        {"max_kv_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_kv_len}},
        {"max_seq_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_seq_len}},
Li Zhang's avatar
Li Zhang committed
278
279
        {"rope_theta", {MEMORY_GPU, TYPE_FP32, {hidden_units_}, rope_theta}},
        {"cu_block_counts", {MEMORY_GPU, TYPE_INT32, {batch_size}, cu_block_counts}}};
Li Zhang's avatar
Li Zhang committed
280
281

    std::unordered_map<std::string, Tensor> decoder_output_tensors{
282
        {"decoder_output", {MEMORY_GPU, dtype, {token_num, hidden_units_}, context_decoder_output_buf}},
Li Zhang's avatar
Li Zhang committed
283
284
        {"key_cache", {MEMORY_GPU, TYPE_UINT64, {bsz}, k_cache_ptr}},
        {"value_cache", {MEMORY_GPU, TYPE_UINT64, {bsz}, v_cache_ptr}},
Li Zhang's avatar
Li Zhang committed
285
286
        {"tmp_k", {MEMORY_GPU, TYPE_UINT64, {bsz}, tmp_k_ptrs}},
        {"tmp_v", {MEMORY_GPU, TYPE_UINT64, {bsz}, tmp_v_ptrs}},
Li Zhang's avatar
Li Zhang committed
287
288
289
290
291
        {"last_token_hidden_units", {MEMORY_GPU, dtype, {bsz, hidden_units_}, deocder_output}}};

    context_decoder_->forward(&decoder_output_tensors, &decoder_input_tensors, &weights_->decoder_layer_weights);

    if (tensor_para_.rank_ == 0) {
lvhan028's avatar
lvhan028 committed
292
        TM_LOG_INFO("context decoding end");
Li Zhang's avatar
Li Zhang committed
293
294
295
296
    }
}

template<typename T>
Li Zhang's avatar
Li Zhang committed
297
298
299
300
301
302
303
304
305
306
307
308
309
void LlamaV2<T>::decoderForward(T*           decoder_output,
                                uintptr_t*   k_cache_ptr,
                                uintptr_t*   v_cache_ptr,
                                T*           decoder_input,
                                const int*   sequence_length,
                                const bool*  finished,
                                const int*   cu_block_counts,
                                const float* rope_theta,
                                int          step,
                                int          ite,
                                int          sum_seq_len,
                                int          max_seq_len,
                                size_t       batch_size)
Li Zhang's avatar
Li Zhang committed
310
{
lvhan028's avatar
lvhan028 committed
311
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
312

Li Zhang's avatar
Li Zhang committed
313
    const auto dtype = getTensorType<T>();
Li Zhang's avatar
Li Zhang committed
314
315
316
317
318
319

    // max_input_length is not used w/o linear_bias_slopes
    // sequence_lengths_ will be incremented in dynamic decode
    std::unordered_map<std::string, Tensor> decoder_input_tensors{
        {"decoder_input", {MEMORY_GPU, dtype, {batch_size, hidden_units_}, decoder_input}},
        {"sequence_lengths", {MEMORY_GPU, TYPE_INT32, {batch_size}, sequence_length}},
Li Zhang's avatar
Li Zhang committed
320
321
        {"cu_block_counts", {MEMORY_GPU, TYPE_INT32, {batch_size}, cu_block_counts}},
        {"sum_seq_len", {MEMORY_CPU, TYPE_INT32, {1}, &sum_seq_len}},
Li Zhang's avatar
Li Zhang committed
322
323
324
        {"max_seq_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_seq_len}},
        {"finished", {MEMORY_GPU, TYPE_BOOL, {batch_size}, finished}},
        {"output_norm_weight", {MEMORY_GPU, dtype, {hidden_units_}, weights_->output_norm_weight}},
Li Zhang's avatar
Li Zhang committed
325
        {"rope_theta", {MEMORY_GPU, TYPE_FP32, {batch_size}, rope_theta}},
Li Zhang's avatar
Li Zhang committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        {"step", {MEMORY_CPU, TYPE_INT32, {1}, &step}},
        {"ite", {MEMORY_CPU, TYPE_INT32, {1}, &ite}},
    };

    // LOG(ERROR) << key_cache_ << " " << value_cache_;
    std::unordered_map<std::string, Tensor> decoder_output_tensors{
        {"decoder_output", {MEMORY_GPU, dtype, {batch_size, hidden_units_}, decoder_output}},
        {"key_cache", {MEMORY_GPU, TYPE_UINT64, {batch_size}, k_cache_ptr}},
        {"value_cache", {MEMORY_GPU, TYPE_UINT64, {batch_size}, v_cache_ptr}},
    };

    decoder_->forward(&decoder_output_tensors, &decoder_input_tensors, &weights_->decoder_layer_weights);
}

template<typename T>
void LlamaV2<T>::postDecodeEmbedding(float* logits, float* local_logits, const T* decoder_output, int batch_size)
{
Li Zhang's avatar
Li Zhang committed
343
    NvtxScope scope("postDecodeEmbedding");
lvhan028's avatar
lvhan028 committed
344
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    cudaDataType_t data_type = getCudaDataType<T>();
    float          alpha     = 1.f;
    float          beta      = 0.f;
    if (tensor_para_.world_size_ == 1) {
        cublas_wrapper_->Gemm(CUBLAS_OP_T,
                              CUBLAS_OP_N,
                              vocab_size_,  // n
                              batch_size,
                              hidden_units_,  // k
                              &alpha,
                              weights_->post_decoder_embedding_kernel,
                              data_type,
                              hidden_units_,  // k
                              decoder_output,
                              data_type,
                              hidden_units_,  // k
                              &beta,
                              logits,
                              CUDA_R_32F,
                              vocab_size_,  // n
                              CUDA_R_32F,
                              cublasGemmAlgo_t(-1));
    }
    else {
369
370
        FT_CHECK(vocab_size_padded_ % tensor_para_.world_size_ == 0);
        const size_t local_vocab_size = vocab_size_padded_ / tensor_para_.world_size_;
Li Zhang's avatar
Li Zhang committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        cublas_wrapper_->Gemm(CUBLAS_OP_T,
                              CUBLAS_OP_N,
                              local_vocab_size,  // n
                              batch_size,
                              hidden_units_,  // k
                              &alpha,
                              weights_->post_decoder_embedding_kernel
                                  + tensor_para_.rank_ * local_vocab_size * hidden_units_,
                              data_type,
                              hidden_units_,  // k
                              decoder_output,
                              data_type,
                              hidden_units_,  // k
                              &beta,
                              local_logits + tensor_para_.rank_ * batch_size * local_vocab_size,
                              CUDA_R_32F,
                              local_vocab_size,  // n
                              CUDA_R_32F,
                              cublasGemmAlgo_t(-1));
        {
            NcclGuard nccl_guard(tensor_para_, stream_);
            ftNcclAllGather(local_logits,                   // send_buf
                            local_logits,                   // recv_buf
                            batch_size * local_vocab_size,  // data_size
                            tensor_para_.rank_,
                            tensor_para_,
                            stream_);
        }
        invokeTransposeAxis01(logits, local_logits, tensor_para_.world_size_, batch_size, local_vocab_size, stream_);
        sync_check_cuda_error();
    }
}

template<typename T>
void LlamaV2<T>::dynamicDecode(int*            token_ids,
                               bool*           finished,
                               int*            sequence_length,
                               bool*           should_stop,
                               TensorMap*      inputs,
                               TensorMap*      outputs,
                               const float*    logits,
                               const uint32_t* seq_limit_len,
                               const int*      context_length,
                               const int*      end_ids,
                               int             step,
                               int             ite,
                               size_t          max_context_len,
                               size_t          token_ids_len,
                               size_t          batch_size)
{
Li Zhang's avatar
Li Zhang committed
421
    NvtxScope scope("dynamicDecode");
lvhan028's avatar
lvhan028 committed
422
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
423
424
425
    int local_batch_size = (int)batch_size;

    std::unordered_map<std::string, Tensor> dynamic_decode_input_tensors{
426
        {"logits", {MEMORY_GPU, TYPE_FP32, {batch_size, (size_t)1, vocab_size_padded_}, logits}},
Li Zhang's avatar
Li Zhang committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
        {"step", {MEMORY_CPU, TYPE_INT32, {1}, &step}},
        {"max_input_length", {MEMORY_CPU, TYPE_INT32, {1}, &max_context_len}},
        {"sequence_limit_length", {MEMORY_GPU, TYPE_UINT32, {batch_size}, seq_limit_len}},
        {"input_lengths", {MEMORY_GPU, TYPE_INT32, {batch_size, 1}, context_length}},
        {"ite", {MEMORY_CPU, TYPE_UINT32, {1}, &ite}},
        {"end_id", {MEMORY_GPU, TYPE_INT32, {batch_size}, end_ids}},
        {"local_batch_size", {MEMORY_CPU, TYPE_INT32, {1}, &local_batch_size}},
    };

    const std::vector<std::string> optional_inputs{"stop_words_list",
                                                   "bad_words_list",
                                                   "runtime_top_k",
                                                   "runtime_top_p",
                                                   "temperature",
                                                   "repetition_penalty",
                                                   "random_seed"};
    for (const auto& key : optional_inputs) {
        if (inputs->isExist(key)) {
            dynamic_decode_input_tensors.insert({key, inputs->at(key)});
        }
    }

    std::unordered_map<std::string, Tensor> dynamic_decode_output_tensors{
        {"output_ids", {MEMORY_GPU, TYPE_INT32, {token_ids_len, batch_size, 1U}, token_ids}},
        {"finished", {MEMORY_GPU, TYPE_BOOL, {batch_size}, finished}},
        {"sequence_length", {MEMORY_GPU, TYPE_INT32, {batch_size}, sequence_length}},
        {"should_stop", {MEMORY_CPU, TYPE_BOOL, {1}, should_stop}}};

    const std::vector<std::string> optional_outputs{"cum_log_probs", "output_log_probs"};
    for (const auto& key : optional_outputs) {
        if (outputs->isExist(key)) {
            dynamic_decode_output_tensors.insert({key, outputs->at(key)});
        }
    }

    dynamic_decode_layer_->forward(&dynamic_decode_output_tensors, &dynamic_decode_input_tensors);
}

static inline Tensor slice(const Tensor& tensor, int index)
{
    auto shape = tensor.shape;
    if (shape.at(0) == 1) {
        return tensor;
    }
    shape[0]          = 1;
    const auto offset = std::accumulate(shape.begin(), shape.end(), (size_t)index, std::multiplies<>{});
    return tensor.slice(shape, offset);
}

// ! implicit conversion from `unordered_map` to `TensorMap` drops 0-sized tensors
static inline TensorMap slice(const std::unordered_map<std::string, Tensor>& src, int index)
{
    TensorMap dst;
    for (const auto& kv : src) {
        dst.insert({kv.first, slice(kv.second, index)});
    }
    return dst;
}

template<typename T>
void LlamaV2<T>::forward(std::unordered_map<std::string, Tensor>*       outputs,
                         const std::unordered_map<std::string, Tensor>* inputs,
                         Control                                        control)
{
    if (debug_) {
        if (tensor_para_.rank_ == 0) {
            for (const auto& kv : *inputs) {
lvhan028's avatar
lvhan028 committed
494
                TM_LOG_INFO("[forward][rank=%d] INPUT: %s", (int)tensor_para_.rank_, format(kv).c_str());
Li Zhang's avatar
Li Zhang committed
495
496
            }
            for (const auto& kv : *outputs) {
lvhan028's avatar
lvhan028 committed
497
                TM_LOG_INFO("[forward][rank=%d] OUTPUT: %s", (int)tensor_para_.rank_, format(kv).c_str());
Li Zhang's avatar
Li Zhang committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
            }
        }
    }

    const int batch_size = outputs->at("output_ids").shape[0];

    const auto rank = tensor_para_.rank_;

    std::vector<std::shared_ptr<Request>> requests(batch_size);

    // rank-0 allocates all requests for the batch
    if (rank == 0) {
        for (int i = 0; i < batch_size; ++i) {
            requests[i] = std::make_shared<Request>();
            requests[i]->inputs.resize(tensor_para_.world_size_);
            requests[i]->outputs.resize(tensor_para_.world_size_);
        }
        control.comm->setSharedObject(&requests);
    }

    control.comm->barrier();

    if (rank != 0) {
        requests = *(std::vector<std::shared_ptr<Request>>*)control.comm->getSharedObject();
    }

    for (int i = 0; i < batch_size; ++i) {
        auto& r = requests[i];

        r->inputs[rank]  = slice(*inputs, i);
        r->outputs[rank] = slice(*outputs, i);

        if (rank == 0) {
            r->id         = r->inputs[rank].getVal<uint64_t>("CORRID", i);
            r->start_flag = r->inputs[rank].getVal<int>("START", 1);
            r->end_flag   = r->inputs[rank].getVal<int>("END", 1);
            r->stop_flag  = r->inputs[rank].getVal<int>("STOP", 0);
            r->stream_cb  = control.callback;
        }
    }

    control.comm->barrier();

    // rank-0 now takes the ownership of `requests`
    // rank-0 submits the tasks and wait for finish
    std::vector<int> error_codes;
    bool             has_error = 0;
    if (rank == 0) {
lvhan028's avatar
lvhan028 committed
546
        TM_LOG_INFO("[forward] Enqueue requests");
Li Zhang's avatar
Li Zhang committed
547
548
549
550
551
552

        std::vector<uint64_t> ids;
        for (const auto& r : requests) {
            ids.push_back(r->id);
        }

Li Zhang's avatar
Li Zhang committed
553
554
        auto futures = shared_state_->request_queue.enqueue(std::move(requests));

Li Zhang's avatar
Li Zhang committed
555
556
        FT_CHECK_WITH_INFO(ids.size() == futures.size(), "check failed");

lvhan028's avatar
lvhan028 committed
557
        TM_LOG_INFO("[forward] Wait for requests to complete ...");
Li Zhang's avatar
Li Zhang committed
558
559
560

        for (int i = 0; i < futures.size(); ++i) {
            auto ec = futures[i].get();
Li Zhang's avatar
Li Zhang committed
561
562
563
564
            error_codes.push_back(ec);
            if (ec) {
                has_error = true;
            }
Li Zhang's avatar
Li Zhang committed
565
            TM_LOG_INFO("[forward] Request complete for %ld, ec = %d", (long)ids[i], (int)ec);
Li Zhang's avatar
Li Zhang committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
        }
    }

    // prevents request tensors being freed before the batch completes
    control.comm->barrier();

    if (rank == 0 && has_error) {
        std::stringstream ss;
        for (int i = 0; i < error_codes.size(); ++i) {
            ss << (i ? "" : " ") << error_codes[i];
        }
        throw std::runtime_error(ss.str());
    }
}

template class LlamaV2<half>;
template class LlamaV2<float>;

lvhan028's avatar
lvhan028 committed
584
}  // namespace turbomind