LlamaV2.cc 25.4 KB
Newer Older
AllentDan's avatar
AllentDan committed
1
/*
Li Zhang's avatar
Li Zhang committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 * Copyright (c) 2021, NAVER Corp.  Authored by CLOVA.
 * Copyright (c) 2022, SK Telecom Authored by A. Dialog
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

AllentDan's avatar
AllentDan committed
20
// Modified from
lvhan028's avatar
lvhan028 committed
21
22
23
24
25
26
27
28
29
30
31
32
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/models/multi_gpu_gpt/ParallelGpt.cc

#include "src/turbomind/models/llama/LlamaV2.h"
#include "src/turbomind/kernels/decoding_kernels.h"
#include "src/turbomind/kernels/gpt_kernels.h"
#include "src/turbomind/models/llama/LlamaBatch.h"
#include "src/turbomind/models/llama/LlamaNcclGuard.h"
#include "src/turbomind/models/llama/LlamaWeight.h"
#include "src/turbomind/models/llama/Request.h"
#include "src/turbomind/models/llama/llama_utils.h"
#include "src/turbomind/utils/Tensor.h"
#include "src/turbomind/utils/cuda_utils.h"
Li Zhang's avatar
Li Zhang committed
33
34
35
36
37
#include <functional>
#include <memory>
#include <sstream>
#include <stdexcept>

lvhan028's avatar
lvhan028 committed
38
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
39
40
41

template<typename T>
LlamaV2<T>::LlamaV2(size_t                       head_num,
42
                    size_t                       kv_head_num,
Li Zhang's avatar
Li Zhang committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
                    size_t                       size_per_head,
                    size_t                       inter_size,
                    size_t                       num_layer,
                    size_t                       vocab_size,
                    size_t                       rotary_embedding_dim,
                    float                        norm_eps,
                    int                          max_batch_size,
                    int                          max_context_token_num,
                    int                          session_len,
                    int                          step_length,
                    int                          start_id,
                    int                          end_id,
                    int                          cache_max_entry_count,
                    int                          cache_chunk_size,
57
                    int                          quant_policy,
Li Zhang's avatar
Li Zhang committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
                    bool                         use_context_fmha,
                    std::shared_ptr<SharedState> shared_state,
                    LlamaWeight<T>*              weights,
                    NcclParam                    tensor_para,
                    cudaStream_t                 stream,
                    cublasMMWrapper*             cublas_wrapper,
                    IAllocator*                  allocator,
                    bool                         is_free_buffer_after_forward,
                    cudaDeviceProp*              cuda_device_prop):
    head_num_(head_num),
    size_per_head_(size_per_head),
    inter_size_(inter_size),
    num_layer_(num_layer),
    vocab_size_(vocab_size),
    rotary_embedding_dim_(rotary_embedding_dim),
    rmsnorm_eps_(norm_eps),
    start_id_(start_id),
    end_id_(end_id),
    hidden_units_(head_num * size_per_head),
    local_head_num_(head_num / tensor_para.world_size_),
    weights_(weights),
    tensor_para_(tensor_para),
    stream_(stream),
    cublas_wrapper_(cublas_wrapper),
    allocator_(allocator),
    is_free_buffer_after_forward_(is_free_buffer_after_forward),
    cuda_device_prop_(cuda_device_prop),
    debug_(isDebug()),
    step_length_(step_length),
    batch_(max_batch_size, max_context_token_num, session_len, this),
    shared_state_(shared_state)

{
lvhan028's avatar
lvhan028 committed
91
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
92
    FT_CHECK(vocab_size_ % tensor_para_.world_size_ == 0);
lvhan028's avatar
lvhan028 committed
93
    TM_LOG_INFO("NCCL group_id = %d", tensor_para_.group_id_);
Li Zhang's avatar
Li Zhang committed
94

95
96
97
98
    size_t elem_bits = 0;
    if (quant_policy & QuantPolicy::kCacheKVInt8) {
        elem_bits = sizeof(int8_t) * 8;
        if (use_context_fmha) {
lvhan028's avatar
lvhan028 committed
99
            TM_LOG_ERROR("use_context_fmha not support int8");
100
101
            assert(0);
        }
AllentDan's avatar
AllentDan committed
102
103
    }
    else {
104
105
        elem_bits = sizeof(T) * 8;
    }
106
107
108

    const size_t local_kv_head_num = kv_head_num / tensor_para.world_size_;

Li Zhang's avatar
Li Zhang committed
109
    kv_cache_mgr_ = std::make_unique<LlamaCacheManager>(num_layer_,
110
                                                        local_kv_head_num,
Li Zhang's avatar
Li Zhang committed
111
112
                                                        size_per_head_,
                                                        session_len,
113
                                                        elem_bits,
Li Zhang's avatar
Li Zhang committed
114
115
116
117
                                                        cache_max_entry_count,
                                                        cache_chunk_size,
                                                        tensor_para.rank_,
                                                        allocator);
118
    initialize(kv_head_num, use_context_fmha, quant_policy);
Li Zhang's avatar
Li Zhang committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    start();
}

template<typename T>
LlamaV2<T>::~LlamaV2()
{
    internal_thread_.join();

    delete decoder_;
    delete dynamic_decode_layer_;
    delete context_decoder_;
}

template<typename T>
133
void LlamaV2<T>::initialize(size_t kv_head_num, bool use_context_fmha, int quant_policy)
Li Zhang's avatar
Li Zhang committed
134
{
lvhan028's avatar
lvhan028 committed
135
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
136
137

    context_decoder_ = new LlamaContextDecoder<T>(head_num_,
138
                                                  kv_head_num,
Li Zhang's avatar
Li Zhang committed
139
140
141
142
143
144
145
146
147
148
                                                  size_per_head_,
                                                  inter_size_,
                                                  num_layer_,
                                                  rotary_embedding_dim_,
                                                  rmsnorm_eps_,
                                                  tensor_para_,
                                                  stream_,
                                                  cublas_wrapper_,
                                                  allocator_,
                                                  is_free_buffer_after_forward_,
149
150
                                                  use_context_fmha,
                                                  quant_policy);
Li Zhang's avatar
Li Zhang committed
151
152

    decoder_ = new LlamaDecoder<T>(head_num_,
153
                                   kv_head_num,
Li Zhang's avatar
Li Zhang committed
154
155
156
157
158
159
160
161
162
                                   size_per_head_,
                                   inter_size_,
                                   num_layer_,
                                   rotary_embedding_dim_,
                                   rmsnorm_eps_,
                                   tensor_para_,
                                   stream_,
                                   cublas_wrapper_,
                                   allocator_,
163
164
                                   is_free_buffer_after_forward_,
                                   quant_policy);
Li Zhang's avatar
Li Zhang committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178

    dynamic_decode_layer_ = new DynamicDecodeLayer<float>(vocab_size_,
                                                          vocab_size_,  // vocab_size_padded,
                                                          0,            // end_id, deprecated
                                                          stream_,
                                                          cublas_wrapper_,
                                                          allocator_,
                                                          is_free_buffer_after_forward_,
                                                          cuda_device_prop_);
}

template<typename T>
void LlamaV2<T>::embeddingLookup(T* embeddings, const int* token_ids_buf, int batch_size, int step)
{
lvhan028's avatar
lvhan028 committed
179
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    // ! This kernel can't be used in context decoding
    invokeEmbeddingLookupPosEncodingPadCount(embeddings,
                                             weights_->pre_decoder_embedding_table,
                                             static_cast<T*>(nullptr),  // position encoding
                                             token_ids_buf,
                                             static_cast<int*>(nullptr),  // padding count, not used w/o pos-code
                                             batch_size,
                                             hidden_units_,
                                             static_cast<T>(1.),  // scale
                                             step,                // step, used int index into output_ids_buf_
                                             batch_size,          // token_num
                                             0,                   // ite
                                             stream_);
    sync_check_cuda_error();
}

template<typename T>
void LlamaV2<T>::contextDecode(T*         deocder_output,
                               uintptr_t* k_cache_ptr,
                               uintptr_t* v_cache_ptr,
                               T*         context_decoder_input_buf,
                               T*         context_decoder_output_buf,
                               const int* input_ids,
                               const int* input_length,
                               const int* history_length,
                               const int* context_length,
                               size_t     token_num,
                               size_t     max_input_len,
                               size_t     max_context_len,
                               size_t     session_len,
                               size_t     batch_size)
{
lvhan028's avatar
lvhan028 committed
212
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
213
214

    if (tensor_para_.rank_ == 0) {
lvhan028's avatar
lvhan028 committed
215
        TM_LOG_INFO("context decoding start");
Li Zhang's avatar
Li Zhang committed
216
217
218
219
220
221
222
223
    }

    invokeInputIdsEmbeddingLookupPosEncoding(context_decoder_input_buf,
                                             nullptr,  // processed somewhere else
                                             weights_->pre_decoder_embedding_table,
                                             static_cast<T*>(nullptr),
                                             pPromptTuningParam<T>{},
                                             input_ids,
AllentDan's avatar
AllentDan committed
224
                                             0,  // only used for position encoding
Li Zhang's avatar
Li Zhang committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
                                             token_num,
                                             token_num,
                                             1,
                                             hidden_units_,
                                             stream_);
    sync_check_cuda_error();

    const auto dtype = getTensorType<T>();
    const auto bsz   = batch_size;

    const int max_q_len   = max_input_len;
    const int max_kv_len  = max_context_len;
    const int max_seq_len = session_len;

    std::unordered_map<std::string, Tensor> decoder_input_tensors{
        {"decoder_input", {MEMORY_GPU, dtype, {token_num, hidden_units_}, context_decoder_input_buf}},
        {"output_norm_weight", {MEMORY_GPU, dtype, {hidden_units_}, weights_->output_norm_weight}},
        {"input_lengths", {MEMORY_GPU, TYPE_INT32, {bsz}, input_length}},
        {"history_lengths", {MEMORY_GPU, TYPE_INT32, {bsz}, history_length}},
        {"context_lengths", {MEMORY_GPU, TYPE_INT32, {bsz}, context_length}},
        {"max_q_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_q_len}},
        {"max_kv_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_kv_len}},
        {"max_seq_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_seq_len}},
    };

    std::unordered_map<std::string, Tensor> decoder_output_tensors{
        {"decoder_output", {MEMORY_GPU, dtype, {bsz, max_input_len, hidden_units_}, context_decoder_output_buf}},
        {"key_cache", {MEMORY_GPU, TYPE_UINT64, {bsz}, k_cache_ptr}},
        {"value_cache", {MEMORY_GPU, TYPE_UINT64, {bsz}, v_cache_ptr}},
        {"last_token_hidden_units", {MEMORY_GPU, dtype, {bsz, hidden_units_}, deocder_output}}};

    context_decoder_->forward(&decoder_output_tensors, &decoder_input_tensors, &weights_->decoder_layer_weights);

    if (tensor_para_.rank_ == 0) {
lvhan028's avatar
lvhan028 committed
259
        TM_LOG_INFO("context decoding end");
Li Zhang's avatar
Li Zhang committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    }
}

template<typename T>
void LlamaV2<T>::decoderForward(T*         decoder_output,
                                uintptr_t* k_cache_ptr,
                                uintptr_t* v_cache_ptr,
                                T*         decoder_input,
                                const int* sequence_length,
                                const int* total_padding_count,
                                bool*      finished,
                                int        step,
                                int        ite,
                                size_t     session_len,
                                size_t     batch_size)
{
lvhan028's avatar
lvhan028 committed
276
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

    const int  max_seq_len = session_len;
    const auto dtype       = getTensorType<T>();

    // max_input_length is not used w/o linear_bias_slopes
    // sequence_lengths_ will be incremented in dynamic decode
    std::unordered_map<std::string, Tensor> decoder_input_tensors{
        {"decoder_input", {MEMORY_GPU, dtype, {batch_size, hidden_units_}, decoder_input}},
        {"sequence_lengths", {MEMORY_GPU, TYPE_INT32, {batch_size}, sequence_length}},
        {"total_padding_tokens", {MEMORY_GPU, TYPE_INT32, {batch_size}, total_padding_count}},
        {"max_seq_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_seq_len}},
        {"finished", {MEMORY_GPU, TYPE_BOOL, {batch_size}, finished}},
        {"output_norm_weight", {MEMORY_GPU, dtype, {hidden_units_}, weights_->output_norm_weight}},
        {"step", {MEMORY_CPU, TYPE_INT32, {1}, &step}},
        {"ite", {MEMORY_CPU, TYPE_INT32, {1}, &ite}},
    };

    // LOG(ERROR) << key_cache_ << " " << value_cache_;
    std::unordered_map<std::string, Tensor> decoder_output_tensors{
        {"decoder_output", {MEMORY_GPU, dtype, {batch_size, hidden_units_}, decoder_output}},
        {"key_cache", {MEMORY_GPU, TYPE_UINT64, {batch_size}, k_cache_ptr}},
        {"value_cache", {MEMORY_GPU, TYPE_UINT64, {batch_size}, v_cache_ptr}},
    };

    decoder_->forward(&decoder_output_tensors, &decoder_input_tensors, &weights_->decoder_layer_weights);
}

template<typename T>
void LlamaV2<T>::postDecodeEmbedding(float* logits, float* local_logits, const T* decoder_output, int batch_size)
{
lvhan028's avatar
lvhan028 committed
307
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    cudaDataType_t data_type = getCudaDataType<T>();
    float          alpha     = 1.f;
    float          beta      = 0.f;
    if (tensor_para_.world_size_ == 1) {
        cublas_wrapper_->Gemm(CUBLAS_OP_T,
                              CUBLAS_OP_N,
                              vocab_size_,  // n
                              batch_size,
                              hidden_units_,  // k
                              &alpha,
                              weights_->post_decoder_embedding_kernel,
                              data_type,
                              hidden_units_,  // k
                              decoder_output,
                              data_type,
                              hidden_units_,  // k
                              &beta,
                              logits,
                              CUDA_R_32F,
                              vocab_size_,  // n
                              CUDA_R_32F,
                              cublasGemmAlgo_t(-1));
    }
    else {
        FT_CHECK(vocab_size_ % tensor_para_.world_size_ == 0);
        const size_t local_vocab_size = vocab_size_ / tensor_para_.world_size_;
        cublas_wrapper_->Gemm(CUBLAS_OP_T,
                              CUBLAS_OP_N,
                              local_vocab_size,  // n
                              batch_size,
                              hidden_units_,  // k
                              &alpha,
                              weights_->post_decoder_embedding_kernel
                                  + tensor_para_.rank_ * local_vocab_size * hidden_units_,
                              data_type,
                              hidden_units_,  // k
                              decoder_output,
                              data_type,
                              hidden_units_,  // k
                              &beta,
                              local_logits + tensor_para_.rank_ * batch_size * local_vocab_size,
                              CUDA_R_32F,
                              local_vocab_size,  // n
                              CUDA_R_32F,
                              cublasGemmAlgo_t(-1));
        {
            NcclGuard nccl_guard(tensor_para_, stream_);
            ftNcclAllGather(local_logits,                   // send_buf
                            local_logits,                   // recv_buf
                            batch_size * local_vocab_size,  // data_size
                            tensor_para_.rank_,
                            tensor_para_,
                            stream_);
        }
        invokeTransposeAxis01(logits, local_logits, tensor_para_.world_size_, batch_size, local_vocab_size, stream_);
        sync_check_cuda_error();
    }
}

template<typename T>
void LlamaV2<T>::dynamicDecode(int*            token_ids,
                               bool*           finished,
                               int*            sequence_length,
                               bool*           should_stop,
                               TensorMap*      inputs,
                               TensorMap*      outputs,
                               const float*    logits,
                               const uint32_t* seq_limit_len,
                               const int*      context_length,
                               const int*      end_ids,
                               int             step,
                               int             ite,
                               size_t          max_context_len,
                               size_t          token_ids_len,
                               size_t          batch_size)
{
lvhan028's avatar
lvhan028 committed
384
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    int local_batch_size = (int)batch_size;

    std::unordered_map<std::string, Tensor> dynamic_decode_input_tensors{
        {"logits", {MEMORY_GPU, TYPE_FP32, {batch_size, (size_t)1, vocab_size_}, logits}},
        {"step", {MEMORY_CPU, TYPE_INT32, {1}, &step}},
        {"max_input_length", {MEMORY_CPU, TYPE_INT32, {1}, &max_context_len}},
        {"sequence_limit_length", {MEMORY_GPU, TYPE_UINT32, {batch_size}, seq_limit_len}},
        {"input_lengths", {MEMORY_GPU, TYPE_INT32, {batch_size, 1}, context_length}},
        {"ite", {MEMORY_CPU, TYPE_UINT32, {1}, &ite}},
        {"end_id", {MEMORY_GPU, TYPE_INT32, {batch_size}, end_ids}},
        {"local_batch_size", {MEMORY_CPU, TYPE_INT32, {1}, &local_batch_size}},
    };

    const std::vector<std::string> optional_inputs{"stop_words_list",
                                                   "bad_words_list",
                                                   "runtime_top_k",
                                                   "runtime_top_p",
                                                   "temperature",
                                                   "repetition_penalty",
                                                   "random_seed"};
    for (const auto& key : optional_inputs) {
        if (inputs->isExist(key)) {
            dynamic_decode_input_tensors.insert({key, inputs->at(key)});
        }
    }

    std::unordered_map<std::string, Tensor> dynamic_decode_output_tensors{
        {"output_ids", {MEMORY_GPU, TYPE_INT32, {token_ids_len, batch_size, 1U}, token_ids}},
        {"finished", {MEMORY_GPU, TYPE_BOOL, {batch_size}, finished}},
        {"sequence_length", {MEMORY_GPU, TYPE_INT32, {batch_size}, sequence_length}},
        {"should_stop", {MEMORY_CPU, TYPE_BOOL, {1}, should_stop}}};

    const std::vector<std::string> optional_outputs{"cum_log_probs", "output_log_probs"};
    for (const auto& key : optional_outputs) {
        if (outputs->isExist(key)) {
            dynamic_decode_output_tensors.insert({key, outputs->at(key)});
        }
    }

    dynamic_decode_layer_->forward(&dynamic_decode_output_tensors, &dynamic_decode_input_tensors);
}

template<typename T>
void LlamaV2<T>::internalThreadEntry(int device_id)
{
lvhan028's avatar
lvhan028 committed
430
    TM_LOG_INFO("[internalThreadEntry] %d", (int)tensor_para_.rank_);
Li Zhang's avatar
Li Zhang committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    check_cuda_error(cudaSetDevice(device_id));

    auto& request_queue  = shared_state_->request_queue;
    auto& infer_requests = shared_state_->infer_requests;
    auto& stop_requests  = shared_state_->stop_requests;

    while (1) {
        if (tensor_para_.rank_ == 0) {
            const int  free_slot_count = batch_.maxSize() - batch_.size() + batch_.finishedCount();
            const bool is_empty        = free_slot_count == batch_.maxSize();

            request_queue.dequeue(stop_requests, infer_requests, free_slot_count, is_empty);

            batch_.verifyRequests(stop_requests, infer_requests);
        }

        // wait while rank-0 is dequeueing
        shared_state_->barrier->wait();

        bool modified = false;

        if (!(batch_.finishedCount() == 0 && stop_requests.empty() && infer_requests.empty())) {
            batch_.handleStopRequests(stop_requests);
            batch_.synchronize();
            modified = true;
        }

        const int infer_request_count = infer_requests.size();

        if (!infer_requests.empty()) {
            batch_.initialize(infer_requests);  // reinitialize when new requests come, possible buffer allocation
            batch_.contextDecode();
            modified = true;
        }

        // wait while shared stop/infer_requests is being used
        shared_state_->barrier->wait();

        if (batch_.size()) {
            if (modified) {
                batch_.initializeGeneration();
                batch_.initializeSampling(infer_request_count);
            }
            for (int i = 0; i < step_length_; ++i) {
                if (!batch_.generate()) {
                    break;
                }
            }
            batch_.finish();
        }
    }

    FT_CHECK(0);
}

template<typename T>
void LlamaV2<T>::start()
{
    int device_id = -1;
    check_cuda_error(cudaGetDevice(&device_id));
    internal_thread_ = std::thread(&LlamaV2<T>::internalThreadEntry, this, device_id);
}

static inline Tensor slice(const Tensor& tensor, int index)
{
    auto shape = tensor.shape;
    if (shape.at(0) == 1) {
        return tensor;
    }
    shape[0]          = 1;
    const auto offset = std::accumulate(shape.begin(), shape.end(), (size_t)index, std::multiplies<>{});
    return tensor.slice(shape, offset);
}

// ! implicit conversion from `unordered_map` to `TensorMap` drops 0-sized tensors
static inline TensorMap slice(const std::unordered_map<std::string, Tensor>& src, int index)
{
    TensorMap dst;
    for (const auto& kv : src) {
        dst.insert({kv.first, slice(kv.second, index)});
    }
    return dst;
}

template<typename T>
void LlamaV2<T>::forward(std::unordered_map<std::string, Tensor>*       outputs,
                         const std::unordered_map<std::string, Tensor>* inputs,
                         Control                                        control)
{
    if (debug_) {
        if (tensor_para_.rank_ == 0) {
            for (const auto& kv : *inputs) {
lvhan028's avatar
lvhan028 committed
523
                TM_LOG_INFO("[forward][rank=%d] INPUT: %s", (int)tensor_para_.rank_, format(kv).c_str());
Li Zhang's avatar
Li Zhang committed
524
525
            }
            for (const auto& kv : *outputs) {
lvhan028's avatar
lvhan028 committed
526
                TM_LOG_INFO("[forward][rank=%d] OUTPUT: %s", (int)tensor_para_.rank_, format(kv).c_str());
Li Zhang's avatar
Li Zhang committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
            }
        }
    }

    const int batch_size = outputs->at("output_ids").shape[0];

    const auto rank = tensor_para_.rank_;

    std::vector<std::shared_ptr<Request>> requests(batch_size);

    // rank-0 allocates all requests for the batch
    if (rank == 0) {
        for (int i = 0; i < batch_size; ++i) {
            requests[i] = std::make_shared<Request>();
            requests[i]->inputs.resize(tensor_para_.world_size_);
            requests[i]->outputs.resize(tensor_para_.world_size_);
        }
        control.comm->setSharedObject(&requests);
    }

    control.comm->barrier();

    if (rank != 0) {
        requests = *(std::vector<std::shared_ptr<Request>>*)control.comm->getSharedObject();
    }

    for (int i = 0; i < batch_size; ++i) {
        auto& r = requests[i];

        r->inputs[rank]  = slice(*inputs, i);
        r->outputs[rank] = slice(*outputs, i);

        if (rank == 0) {
            r->id         = r->inputs[rank].getVal<uint64_t>("CORRID", i);
            r->start_flag = r->inputs[rank].getVal<int>("START", 1);
            r->end_flag   = r->inputs[rank].getVal<int>("END", 1);
            r->stop_flag  = r->inputs[rank].getVal<int>("STOP", 0);
            r->stream_cb  = control.callback;
        }
    }

    control.comm->barrier();

    // rank-0 now takes the ownership of `requests`
    // rank-0 submits the tasks and wait for finish
    std::vector<int> error_codes;
    bool             has_error = 0;
    if (rank == 0) {
lvhan028's avatar
lvhan028 committed
575
        TM_LOG_INFO("[forward] Enqueue requests");
Li Zhang's avatar
Li Zhang committed
576
577
        auto futures = shared_state_->request_queue.enqueue(std::move(requests));

lvhan028's avatar
lvhan028 committed
578
        TM_LOG_INFO("[forward] Wait for requests to complete ...");
Li Zhang's avatar
Li Zhang committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
        for (auto& f : futures) {
            auto ec = f.get();
            error_codes.push_back(ec);
            if (ec) {
                has_error = true;
            }
        }
    }

    // prevents request tensors being freed before the batch completes
    control.comm->barrier();

    if (rank == 0 && has_error) {
        std::stringstream ss;
        for (int i = 0; i < error_codes.size(); ++i) {
            ss << (i ? "" : " ") << error_codes[i];
        }
        throw std::runtime_error(ss.str());
    }
}

template class LlamaV2<half>;
template class LlamaV2<float>;

lvhan028's avatar
lvhan028 committed
603
}  // namespace turbomind