workflow.py 3.93 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/summarization/run_summarization.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
17

chenych's avatar
chenych committed
18
from typing import TYPE_CHECKING, Optional
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
19

luopl's avatar
luopl committed
20
from ...data import PairwiseDataCollatorWithPadding, get_dataset, get_template_and_fix_tokenizer
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
21
22
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer
chenych's avatar
chenych committed
23
24
25
from ..callbacks import fix_valuehead_checkpoint
from ..trainer_utils import create_modelcard_and_push
from .metric import ComputeAccuracy
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from .trainer import PairwiseTrainer


if TYPE_CHECKING:
    from transformers import Seq2SeqTrainingArguments, TrainerCallback

    from ...hparams import DataArguments, FinetuningArguments, ModelArguments


def run_rm(
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    finetuning_args: "FinetuningArguments",
chenych's avatar
chenych committed
40
    callbacks: Optional[list["TrainerCallback"]] = None,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
41
):
chenych's avatar
chenych committed
42
43
    tokenizer_module = load_tokenizer(model_args)
    tokenizer = tokenizer_module["tokenizer"]
luopl's avatar
luopl committed
44
45
    template = get_template_and_fix_tokenizer(tokenizer, data_args)
    dataset_module = get_dataset(template, model_args, data_args, training_args, stage="rm", **tokenizer_module)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
46
    model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
luopl's avatar
luopl committed
47
48
49
    data_collator = PairwiseDataCollatorWithPadding(
        template=template, model=model, pad_to_multiple_of=8, **tokenizer_module
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
50
51
52
53
54
55
56

    # Initialize our Trainer
    trainer = PairwiseTrainer(
        model=model,
        args=training_args,
        finetuning_args=finetuning_args,
        data_collator=data_collator,
chenych's avatar
chenych committed
57
58
59
60
        callbacks=callbacks,
        compute_metrics=ComputeAccuracy(),
        **dataset_module,
        **tokenizer_module,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
61
62
63
64
65
66
67
68
    )

    # Training
    if training_args.do_train:
        train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
        trainer.save_model()
        if training_args.should_save:
            fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
chenych's avatar
chenych committed
69

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
70
71
72
73
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()
        if trainer.is_world_process_zero() and finetuning_args.plot_loss:
chenych's avatar
chenych committed
74
75
76
77
78
79
80
81
82
            keys = ["loss"]
            if isinstance(dataset_module.get("eval_dataset"), dict):
                keys += sum(
                    [[f"eval_{key}_loss", f"eval_{key}_accuracy"] for key in dataset_module["eval_dataset"].keys()], []
                )
            else:
                keys += ["eval_loss", "eval_accuracy"]

            plot_loss(training_args.output_dir, keys=keys)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
83
84
85
86
87
88
89
90
91

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate(metric_key_prefix="eval")
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Predict
    if training_args.do_predict:
chenych's avatar
chenych committed
92
        predict_results = trainer.predict(dataset_module["eval_dataset"], metric_key_prefix="predict")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
93
94
95
96
97
98
        trainer.log_metrics("predict", predict_results.metrics)
        trainer.save_metrics("predict", predict_results.metrics)
        trainer.save_predictions(predict_results)

    # Create model card
    create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)