workflow.py 3.73 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/summarization/run_summarization.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
17
18
19

from typing import TYPE_CHECKING, List, Optional

luopl's avatar
luopl committed
20
from ...data import PairwiseDataCollatorWithPadding, get_dataset, get_template_and_fix_tokenizer
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
21
22
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer
chenych's avatar
chenych committed
23
24
25
from ..callbacks import fix_valuehead_checkpoint
from ..trainer_utils import create_modelcard_and_push
from .metric import ComputeAccuracy
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from .trainer import PairwiseTrainer


if TYPE_CHECKING:
    from transformers import Seq2SeqTrainingArguments, TrainerCallback

    from ...hparams import DataArguments, FinetuningArguments, ModelArguments


def run_rm(
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    finetuning_args: "FinetuningArguments",
    callbacks: Optional[List["TrainerCallback"]] = None,
):
chenych's avatar
chenych committed
42
43
    tokenizer_module = load_tokenizer(model_args)
    tokenizer = tokenizer_module["tokenizer"]
luopl's avatar
luopl committed
44
45
    template = get_template_and_fix_tokenizer(tokenizer, data_args)
    dataset_module = get_dataset(template, model_args, data_args, training_args, stage="rm", **tokenizer_module)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
46
    model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
luopl's avatar
luopl committed
47
    data_collator = PairwiseDataCollatorWithPadding(template=template, pad_to_multiple_of=8, **tokenizer_module)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
48
49

    # Update arguments
luopl's avatar
luopl committed
50
    training_args.remove_unused_columns = False  # important for multimodal and pairwise dataset
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
51
52
53
54
55
56
57

    # Initialize our Trainer
    trainer = PairwiseTrainer(
        model=model,
        args=training_args,
        finetuning_args=finetuning_args,
        data_collator=data_collator,
chenych's avatar
chenych committed
58
59
60
61
        callbacks=callbacks,
        compute_metrics=ComputeAccuracy(),
        **dataset_module,
        **tokenizer_module,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
62
63
64
65
66
67
68
69
    )

    # Training
    if training_args.do_train:
        train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
        trainer.save_model()
        if training_args.should_save:
            fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
chenych's avatar
chenych committed
70

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()
        if trainer.is_world_process_zero() and finetuning_args.plot_loss:
            plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "eval_accuracy"])

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate(metric_key_prefix="eval")
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Predict
    if training_args.do_predict:
chenych's avatar
chenych committed
85
        predict_results = trainer.predict(dataset_module["eval_dataset"], metric_key_prefix="predict")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
86
87
88
89
90
91
        trainer.log_metrics("predict", predict_results.metrics)
        trainer.save_metrics("predict", predict_results.metrics)
        trainer.save_predictions(predict_results)

    # Create model card
    create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)