workflow.py 3.58 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/summarization/run_summarization.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
17
18
19

from typing import TYPE_CHECKING, List, Optional

chenych's avatar
chenych committed
20
from ...data import PairwiseDataCollatorWithPadding, get_dataset
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
21
22
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer
chenych's avatar
chenych committed
23
24
25
from ..callbacks import fix_valuehead_checkpoint
from ..trainer_utils import create_modelcard_and_push
from .metric import ComputeAccuracy
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from .trainer import PairwiseTrainer


if TYPE_CHECKING:
    from transformers import Seq2SeqTrainingArguments, TrainerCallback

    from ...hparams import DataArguments, FinetuningArguments, ModelArguments


def run_rm(
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    finetuning_args: "FinetuningArguments",
    callbacks: Optional[List["TrainerCallback"]] = None,
):
chenych's avatar
chenych committed
42
43
44
    tokenizer_module = load_tokenizer(model_args)
    tokenizer = tokenizer_module["tokenizer"]
    dataset_module = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
45
46
47
48
49
50
51
52
53
54
55
56
    model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
    data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)

    # Update arguments
    training_args.remove_unused_columns = False  # important for pairwise dataset

    # Initialize our Trainer
    trainer = PairwiseTrainer(
        model=model,
        args=training_args,
        finetuning_args=finetuning_args,
        data_collator=data_collator,
chenych's avatar
chenych committed
57
58
59
60
        callbacks=callbacks,
        compute_metrics=ComputeAccuracy(),
        **dataset_module,
        **tokenizer_module,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
61
62
63
64
65
66
67
68
    )

    # Training
    if training_args.do_train:
        train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
        trainer.save_model()
        if training_args.should_save:
            fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
chenych's avatar
chenych committed
69

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()
        if trainer.is_world_process_zero() and finetuning_args.plot_loss:
            plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "eval_accuracy"])

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate(metric_key_prefix="eval")
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Predict
    if training_args.do_predict:
chenych's avatar
chenych committed
84
        predict_results = trainer.predict(dataset_module["eval_dataset"], metric_key_prefix="predict")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
85
86
87
88
89
90
        trainer.log_metrics("predict", predict_results.metrics)
        trainer.save_metrics("predict", predict_results.metrics)
        trainer.save_predictions(predict_results)

    # Create model card
    create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)