loader.py 13.3 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
chenych's avatar
chenych committed
16
from typing import TYPE_CHECKING, Literal, Optional, Union
chenych's avatar
chenych committed
17
18

import numpy as np
chenych's avatar
chenych committed
19
from datasets import load_dataset, load_from_disk
chenych's avatar
chenych committed
20

luopl's avatar
luopl committed
21
from ..extras import logging
chenych's avatar
chenych committed
22
from ..extras.constants import FILEEXT2TYPE
luopl's avatar
luopl committed
23
from ..extras.misc import check_version, has_tokenized_data
chenych's avatar
chenych committed
24
from .converter import align_dataset
chenych's avatar
chenych committed
25
from .data_utils import get_dataset_module, merge_dataset, split_dataset
chenych's avatar
chenych committed
26
from .parser import get_dataset_list
chenych's avatar
chenych committed
27
28
29
30
31
32
33
34
from .processor import (
    FeedbackDatasetProcessor,
    PackedSupervisedDatasetProcessor,
    PairwiseDatasetProcessor,
    PretrainDatasetProcessor,
    SupervisedDatasetProcessor,
    UnsupervisedDatasetProcessor,
)
chenych's avatar
chenych committed
35
36
37
38
39
40
41
42
43


if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset
    from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments

    from ..hparams import DataArguments, ModelArguments
    from .data_utils import DatasetModule
    from .parser import DatasetAttr
chenych's avatar
chenych committed
44
    from .processor import DatasetProcessor
chenych's avatar
chenych committed
45
46
47
    from .template import Template


luopl's avatar
luopl committed
48
logger = logging.get_logger(__name__)
chenych's avatar
chenych committed
49
50
51
52
53
54
55
56


def _load_single_dataset(
    dataset_attr: "DatasetAttr",
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
chenych's avatar
chenych committed
57
    r"""Load a single dataset and aligns it to the standard format."""
luopl's avatar
luopl committed
58
    logger.info_rank0(f"Loading dataset {dataset_attr}...")
chenych's avatar
chenych committed
59
    data_path, data_name, data_dir, data_files = None, None, None, None
luopl's avatar
luopl committed
60
    if dataset_attr.load_from in ["hf_hub", "ms_hub", "om_hub"]:
chenych's avatar
chenych committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        data_path = dataset_attr.dataset_name
        data_name = dataset_attr.subset
        data_dir = dataset_attr.folder

    elif dataset_attr.load_from == "script":
        data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
        data_name = dataset_attr.subset
        data_dir = dataset_attr.folder

    elif dataset_attr.load_from == "file":
        data_files = []
        local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
        if os.path.isdir(local_path):  # is directory
            for file_name in os.listdir(local_path):
                data_files.append(os.path.join(local_path, file_name))
        elif os.path.isfile(local_path):  # is file
            data_files.append(local_path)
        else:
luopl's avatar
luopl committed
79
            raise ValueError(f"File {local_path} not found.")
chenych's avatar
chenych committed
80

luopl's avatar
luopl committed
81
        data_path = FILEEXT2TYPE.get(os.path.splitext(data_files[0])[-1][1:], None)
chenych's avatar
chenych committed
82
83
        if data_path is None:
            raise ValueError("Allowed file types: {}.".format(",".join(FILEEXT2TYPE.keys())))
luopl's avatar
luopl committed
84
85
86

        if any(data_path != FILEEXT2TYPE.get(os.path.splitext(data_file)[-1][1:], None) for data_file in data_files):
            raise ValueError("File types should be identical.")
chenych's avatar
chenych committed
87
    else:
luopl's avatar
luopl committed
88
        raise NotImplementedError(f"Unknown load type: {dataset_attr.load_from}.")
chenych's avatar
chenych committed
89
90

    if dataset_attr.load_from == "ms_hub":
luopl's avatar
luopl committed
91
        check_version("modelscope>=1.11.0", mandatory=True)
luopl's avatar
luopl committed
92
93
        from modelscope import MsDataset  # type: ignore
        from modelscope.utils.config_ds import MS_DATASETS_CACHE  # type: ignore
chenych's avatar
chenych committed
94
95
96
97
98
99
100
101
102
103

        cache_dir = model_args.cache_dir or MS_DATASETS_CACHE
        dataset = MsDataset.load(
            dataset_name=data_path,
            subset_name=data_name,
            data_dir=data_dir,
            data_files=data_files,
            split=dataset_attr.split,
            cache_dir=cache_dir,
            token=model_args.ms_hub_token,
luopl's avatar
luopl committed
104
            use_streaming=data_args.streaming,
chenych's avatar
chenych committed
105
106
107
        )
        if isinstance(dataset, MsDataset):
            dataset = dataset.to_hf_dataset()
luopl's avatar
luopl committed
108
109

    elif dataset_attr.load_from == "om_hub":
luopl's avatar
luopl committed
110
        check_version("openmind>=0.8.0", mandatory=True)
luopl's avatar
luopl committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        from openmind import OmDataset  # type: ignore
        from openmind.utils.hub import OM_DATASETS_CACHE  # type: ignore

        cache_dir = model_args.cache_dir or OM_DATASETS_CACHE
        dataset = OmDataset.load_dataset(
            path=data_path,
            name=data_name,
            data_dir=data_dir,
            data_files=data_files,
            split=dataset_attr.split,
            cache_dir=cache_dir,
            token=model_args.om_hub_token,
            streaming=data_args.streaming,
        )
chenych's avatar
chenych committed
125
126
127
128
129
130
131
132
133
    else:
        dataset = load_dataset(
            path=data_path,
            name=data_name,
            data_dir=data_dir,
            data_files=data_files,
            split=dataset_attr.split,
            cache_dir=model_args.cache_dir,
            token=model_args.hf_hub_token,
luopl's avatar
luopl committed
134
135
            num_proc=data_args.preprocessing_num_workers,
            trust_remote_code=model_args.trust_remote_code,
chenych's avatar
chenych committed
136
            streaming=data_args.streaming and dataset_attr.load_from != "file",
chenych's avatar
chenych committed
137
        )
chenych's avatar
chenych committed
138
139
        if data_args.streaming and dataset_attr.load_from == "file":
            dataset = dataset.to_iterable_dataset(num_shards=training_args.dataloader_num_workers)
chenych's avatar
chenych committed
140
141
142

    if dataset_attr.num_samples is not None and not data_args.streaming:
        target_num = dataset_attr.num_samples
luopl's avatar
luopl committed
143
        indexes = np.random.permutation(len(dataset))[:target_num]  # all samples should be included
chenych's avatar
chenych committed
144
145
146
147
148
149
150
        target_num -= len(indexes)
        if target_num > 0:
            expand_indexes = np.random.choice(len(dataset), target_num)
            indexes = np.concatenate((indexes, expand_indexes), axis=0)

        assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched."
        dataset = dataset.select(indexes)
luopl's avatar
luopl committed
151
        logger.info_rank0(f"Sampled {dataset_attr.num_samples} examples from dataset {dataset_attr}.")
chenych's avatar
chenych committed
152
153
154
155
156
157
158
159
160

    if data_args.max_samples is not None:  # truncate dataset
        max_samples = min(data_args.max_samples, len(dataset))
        dataset = dataset.select(range(max_samples))

    return align_dataset(dataset, dataset_attr, data_args, training_args)


def _get_merged_dataset(
chenych's avatar
chenych committed
161
    dataset_names: Optional[list[str]],
chenych's avatar
chenych committed
162
163
164
165
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
chenych's avatar
chenych committed
166
    merge: bool = True,
chenych's avatar
chenych committed
167
168
) -> Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]]:
    r"""Return the merged datasets in the standard format."""
chenych's avatar
chenych committed
169
170
171
    if dataset_names is None:
        return None

chenych's avatar
chenych committed
172
173
    datasets = {}
    for dataset_name, dataset_attr in zip(dataset_names, get_dataset_list(dataset_names, data_args.dataset_dir)):
chenych's avatar
chenych committed
174
175
176
        if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
            raise ValueError("The dataset is not applicable in the current training stage.")

chenych's avatar
chenych committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args)

    if merge:
        return merge_dataset(list(datasets.values()), data_args, seed=training_args.seed)
    else:
        return datasets


def _get_dataset_processor(
    data_args: "DataArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"],
    do_generate: bool = False,
) -> "DatasetProcessor":
chenych's avatar
chenych committed
193
    r"""Return the corresponding dataset processor."""
chenych's avatar
chenych committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    if stage == "pt":
        dataset_processor_class = PretrainDatasetProcessor
    elif stage == "sft" and not do_generate:
        if data_args.packing:
            if data_args.neat_packing:  # hack datasets to have int32 attention mask
                from datasets.arrow_writer import OptimizedTypedSequence, TypedSequence

                def __init__(self, data, **kwargs):
                    return TypedSequence.__init__(
                        self,
                        data,
                        type=kwargs.pop("type", None),
                        try_type=kwargs.pop("try_type", None),
                        optimized_int_type=kwargs.pop("optimized_int_type", None),
                    )

                OptimizedTypedSequence.__init__ = __init__
            dataset_processor_class = PackedSupervisedDatasetProcessor
        else:
            dataset_processor_class = SupervisedDatasetProcessor

    elif stage == "rm":
        dataset_processor_class = PairwiseDatasetProcessor
    elif stage == "kto":
        dataset_processor_class = FeedbackDatasetProcessor
    else:
        dataset_processor_class = UnsupervisedDatasetProcessor
chenych's avatar
chenych committed
221

chenych's avatar
chenych committed
222
    return dataset_processor_class(template=template, tokenizer=tokenizer, processor=processor, data_args=data_args)
chenych's avatar
chenych committed
223
224
225
226
227
228
229
230
231
232
233
234


def _get_preprocessed_dataset(
    dataset: Optional[Union["Dataset", "IterableDataset"]],
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"] = None,
    is_eval: bool = False,
) -> Optional[Union["Dataset", "IterableDataset"]]:
chenych's avatar
chenych committed
235
    r"""Preprocesses the dataset, including format checking and tokenization."""
chenych's avatar
chenych committed
236
237
238
    if dataset is None:
        return None

chenych's avatar
chenych committed
239
    dataset_processor = _get_dataset_processor(
chenych's avatar
chenych committed
240
241
242
243
244
245
246
247
248
249
250
        data_args, stage, template, tokenizer, processor, do_generate=(training_args.predict_with_generate and is_eval)
    )
    column_names = list(next(iter(dataset)).keys())
    kwargs = {}
    if not data_args.streaming:
        kwargs = dict(
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
            desc="Running tokenizer on dataset",
        )

luopl's avatar
luopl committed
251
    dataset = dataset.map(
chenych's avatar
chenych committed
252
        dataset_processor.preprocess_dataset,
luopl's avatar
luopl committed
253
254
255
256
257
        batched=True,
        batch_size=data_args.preprocessing_batch_size,
        remove_columns=column_names,
        **kwargs,
    )
chenych's avatar
chenych committed
258
259
260
261

    if training_args.should_log:
        try:
            print("eval example:" if is_eval else "training example:")
chenych's avatar
chenych committed
262
            dataset_processor.print_data_example(next(iter(dataset)))
chenych's avatar
chenych committed
263
264
265
266
267
268
269
270
271
272
        except StopIteration:
            if stage == "pt":
                raise RuntimeError("Cannot find sufficient samples, consider increasing dataset size.")
            else:
                raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")

    return dataset


def get_dataset(
luopl's avatar
luopl committed
273
    template: "Template",
chenych's avatar
chenych committed
274
275
276
277
278
279
280
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"] = None,
) -> "DatasetModule":
chenych's avatar
chenych committed
281
    r"""Get the train dataset and optionally gets the evaluation dataset."""
chenych's avatar
chenych committed
282
    # Load tokenized dataset if path exists
chenych's avatar
chenych committed
283
284
    if data_args.tokenized_path is not None:
        if has_tokenized_data(data_args.tokenized_path):
luopl's avatar
luopl committed
285
            logger.warning_rank0("Loading dataset from disk will ignore other data arguments.")
chenych's avatar
chenych committed
286
287
            tokenized_data = load_from_disk(data_args.tokenized_path)
            dataset_module = get_dataset_module(tokenized_data)
chenych's avatar
chenych committed
288
            if data_args.streaming:
chenych's avatar
chenych committed
289
                dataset_module["train_dataset"] = dataset_module["train_dataset"].to_iterable_dataset()
chenych's avatar
chenych committed
290

chenych's avatar
chenych committed
291
            logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
chenych's avatar
chenych committed
292
293
294
295
296
297
298
299
            return dataset_module

        if data_args.streaming:
            raise ValueError("Turn off `streaming` when saving dataset to disk.")

    # Load and preprocess dataset
    with training_args.main_process_first(desc="load dataset"):
        dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage)
chenych's avatar
chenych committed
300
301
302
        eval_dataset = _get_merged_dataset(
            data_args.eval_dataset, model_args, data_args, training_args, stage, merge=training_args.do_predict
        )
chenych's avatar
chenych committed
303
304
305
306
307

    with training_args.main_process_first(desc="pre-process dataset"):
        dataset = _get_preprocessed_dataset(
            dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=False
        )
chenych's avatar
chenych committed
308
309
310
311
312
313
314
315
316
        if isinstance(eval_dataset, dict):
            for eval_name, eval_data in eval_dataset.items():
                eval_dataset[eval_name] = _get_preprocessed_dataset(
                    eval_data, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
                )
        else:
            eval_dataset = _get_preprocessed_dataset(
                eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
            )
chenych's avatar
chenych committed
317

chenych's avatar
chenych committed
318
319
        dataset_dict = split_dataset(dataset, eval_dataset, data_args, seed=training_args.seed)
        if data_args.tokenized_path is not None:  # save tokenized dataset to disk
chenych's avatar
chenych committed
320
321
            if training_args.should_save:
                dataset_dict.save_to_disk(data_args.tokenized_path)
chenych's avatar
chenych committed
322
                logger.info_rank0(f"Tokenized dataset is saved at {data_args.tokenized_path}.")
chenych's avatar
chenych committed
323
                logger.info_rank0(f"Please launch the training with `tokenized_path: {data_args.tokenized_path}`.")
chenych's avatar
chenych committed
324

chenych's avatar
chenych committed
325
        return get_dataset_module(dataset_dict)