loader.py 11.8 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
from typing import TYPE_CHECKING, Dict, Literal, Optional, Sequence, Union

import numpy as np
from datasets import DatasetDict, load_dataset, load_from_disk
from transformers.utils.versions import require_version

luopl's avatar
luopl committed
23
from ..extras import logging
chenych's avatar
chenych committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from ..extras.constants import FILEEXT2TYPE
from ..extras.misc import has_tokenized_data
from .aligner import align_dataset
from .data_utils import merge_dataset, split_dataset
from .parser import get_dataset_list
from .preprocess import get_preprocess_and_print_func


if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset
    from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments

    from ..hparams import DataArguments, ModelArguments
    from .data_utils import DatasetModule
    from .parser import DatasetAttr
    from .template import Template


luopl's avatar
luopl committed
42
logger = logging.get_logger(__name__)
chenych's avatar
chenych committed
43
44
45
46
47
48
49
50


def _load_single_dataset(
    dataset_attr: "DatasetAttr",
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
luopl's avatar
luopl committed
51
52
53
    r"""
    Loads a single dataset and aligns it to the standard format.
    """
luopl's avatar
luopl committed
54
    logger.info_rank0(f"Loading dataset {dataset_attr}...")
chenych's avatar
chenych committed
55
    data_path, data_name, data_dir, data_files = None, None, None, None
luopl's avatar
luopl committed
56
    if dataset_attr.load_from in ["hf_hub", "ms_hub", "om_hub"]:
chenych's avatar
chenych committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        data_path = dataset_attr.dataset_name
        data_name = dataset_attr.subset
        data_dir = dataset_attr.folder

    elif dataset_attr.load_from == "script":
        data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
        data_name = dataset_attr.subset
        data_dir = dataset_attr.folder

    elif dataset_attr.load_from == "file":
        data_files = []
        local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
        if os.path.isdir(local_path):  # is directory
            for file_name in os.listdir(local_path):
                data_files.append(os.path.join(local_path, file_name))
        elif os.path.isfile(local_path):  # is file
            data_files.append(local_path)
        else:
luopl's avatar
luopl committed
75
            raise ValueError(f"File {local_path} not found.")
chenych's avatar
chenych committed
76

luopl's avatar
luopl committed
77
        data_path = FILEEXT2TYPE.get(os.path.splitext(data_files[0])[-1][1:], None)
chenych's avatar
chenych committed
78
79
        if data_path is None:
            raise ValueError("Allowed file types: {}.".format(",".join(FILEEXT2TYPE.keys())))
luopl's avatar
luopl committed
80
81
82

        if any(data_path != FILEEXT2TYPE.get(os.path.splitext(data_file)[-1][1:], None) for data_file in data_files):
            raise ValueError("File types should be identical.")
chenych's avatar
chenych committed
83
    else:
luopl's avatar
luopl committed
84
        raise NotImplementedError(f"Unknown load type: {dataset_attr.load_from}.")
chenych's avatar
chenych committed
85
86
87

    if dataset_attr.load_from == "ms_hub":
        require_version("modelscope>=1.11.0", "To fix: pip install modelscope>=1.11.0")
luopl's avatar
luopl committed
88
89
        from modelscope import MsDataset  # type: ignore
        from modelscope.utils.config_ds import MS_DATASETS_CACHE  # type: ignore
chenych's avatar
chenych committed
90
91
92
93
94
95
96
97
98
99

        cache_dir = model_args.cache_dir or MS_DATASETS_CACHE
        dataset = MsDataset.load(
            dataset_name=data_path,
            subset_name=data_name,
            data_dir=data_dir,
            data_files=data_files,
            split=dataset_attr.split,
            cache_dir=cache_dir,
            token=model_args.ms_hub_token,
luopl's avatar
luopl committed
100
            use_streaming=data_args.streaming,
chenych's avatar
chenych committed
101
102
103
        )
        if isinstance(dataset, MsDataset):
            dataset = dataset.to_hf_dataset()
luopl's avatar
luopl committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

    elif dataset_attr.load_from == "om_hub":
        require_version("openmind>=0.8.0", "To fix: pip install openmind>=0.8.0")
        from openmind import OmDataset  # type: ignore
        from openmind.utils.hub import OM_DATASETS_CACHE  # type: ignore

        cache_dir = model_args.cache_dir or OM_DATASETS_CACHE
        dataset = OmDataset.load_dataset(
            path=data_path,
            name=data_name,
            data_dir=data_dir,
            data_files=data_files,
            split=dataset_attr.split,
            cache_dir=cache_dir,
            token=model_args.om_hub_token,
            streaming=data_args.streaming,
        )
chenych's avatar
chenych committed
121
122
123
124
125
126
127
128
129
    else:
        dataset = load_dataset(
            path=data_path,
            name=data_name,
            data_dir=data_dir,
            data_files=data_files,
            split=dataset_attr.split,
            cache_dir=model_args.cache_dir,
            token=model_args.hf_hub_token,
luopl's avatar
luopl committed
130
            streaming=data_args.streaming,
chenych's avatar
chenych committed
131
132
133
134
135
            trust_remote_code=True,
        )

    if dataset_attr.num_samples is not None and not data_args.streaming:
        target_num = dataset_attr.num_samples
luopl's avatar
luopl committed
136
        indexes = np.random.permutation(len(dataset))[:target_num]  # all samples should be included
chenych's avatar
chenych committed
137
138
139
140
141
142
143
        target_num -= len(indexes)
        if target_num > 0:
            expand_indexes = np.random.choice(len(dataset), target_num)
            indexes = np.concatenate((indexes, expand_indexes), axis=0)

        assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched."
        dataset = dataset.select(indexes)
luopl's avatar
luopl committed
144
        logger.info_rank0(f"Sampled {dataset_attr.num_samples} examples from dataset {dataset_attr}.")
chenych's avatar
chenych committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

    if data_args.max_samples is not None:  # truncate dataset
        max_samples = min(data_args.max_samples, len(dataset))
        dataset = dataset.select(range(max_samples))

    return align_dataset(dataset, dataset_attr, data_args, training_args)


def _get_merged_dataset(
    dataset_names: Optional[Sequence[str]],
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
) -> Optional[Union["Dataset", "IterableDataset"]]:
luopl's avatar
luopl committed
160
161
162
    r"""
    Gets the merged datasets in the standard format.
    """
chenych's avatar
chenych committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    if dataset_names is None:
        return None

    datasets = []
    for dataset_attr in get_dataset_list(dataset_names, data_args.dataset_dir):
        if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
            raise ValueError("The dataset is not applicable in the current training stage.")

        datasets.append(_load_single_dataset(dataset_attr, model_args, data_args, training_args))

    return merge_dataset(datasets, data_args, seed=training_args.seed)


def _get_preprocessed_dataset(
    dataset: Optional[Union["Dataset", "IterableDataset"]],
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"] = None,
    is_eval: bool = False,
) -> Optional[Union["Dataset", "IterableDataset"]]:
luopl's avatar
luopl committed
186
187
188
    r"""
    Preprocesses the dataset, including format checking and tokenization.
    """
chenych's avatar
chenych committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    if dataset is None:
        return None

    preprocess_func, print_function = get_preprocess_and_print_func(
        data_args, stage, template, tokenizer, processor, do_generate=(training_args.predict_with_generate and is_eval)
    )
    column_names = list(next(iter(dataset)).keys())
    kwargs = {}
    if not data_args.streaming:
        kwargs = dict(
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
            desc="Running tokenizer on dataset",
        )

luopl's avatar
luopl committed
204
205
206
207
208
209
210
    dataset = dataset.map(
        preprocess_func,
        batched=True,
        batch_size=data_args.preprocessing_batch_size,
        remove_columns=column_names,
        **kwargs,
    )
chenych's avatar
chenych committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

    if training_args.should_log:
        try:
            print("eval example:" if is_eval else "training example:")
            print_function(next(iter(dataset)))
        except StopIteration:
            if stage == "pt":
                raise RuntimeError("Cannot find sufficient samples, consider increasing dataset size.")
            else:
                raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")

    return dataset


def get_dataset(
luopl's avatar
luopl committed
226
    template: "Template",
chenych's avatar
chenych committed
227
228
229
230
231
232
233
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"] = None,
) -> "DatasetModule":
luopl's avatar
luopl committed
234
235
236
    r"""
    Gets the train dataset and optionally gets the evaluation dataset.
    """
chenych's avatar
chenych committed
237
238
239
    # Load tokenized dataset
    if data_args.tokenized_path is not None:
        if has_tokenized_data(data_args.tokenized_path):
luopl's avatar
luopl committed
240
            logger.warning_rank0("Loading dataset from disk will ignore other data arguments.")
chenych's avatar
chenych committed
241
            dataset_dict: "DatasetDict" = load_from_disk(data_args.tokenized_path)
luopl's avatar
luopl committed
242
            logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
chenych's avatar
chenych committed
243
244
245
246

            dataset_module: Dict[str, "Dataset"] = {}
            if "train" in dataset_dict:
                dataset_module["train_dataset"] = dataset_dict["train"]
luopl's avatar
luopl committed
247

chenych's avatar
chenych committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
            if "validation" in dataset_dict:
                dataset_module["eval_dataset"] = dataset_dict["validation"]

            if data_args.streaming:
                dataset_module = {k: v.to_iterable_dataset() for k, v in dataset_module.items()}

            return dataset_module

        if data_args.streaming:
            raise ValueError("Turn off `streaming` when saving dataset to disk.")

    # Load and preprocess dataset
    with training_args.main_process_first(desc="load dataset"):
        dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage)
        eval_dataset = _get_merged_dataset(data_args.eval_dataset, model_args, data_args, training_args, stage)

    with training_args.main_process_first(desc="pre-process dataset"):
        dataset = _get_preprocessed_dataset(
            dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=False
        )
        eval_dataset = _get_preprocessed_dataset(
            eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
        )

        if data_args.val_size > 1e-6:
            dataset_dict = split_dataset(dataset, data_args, seed=training_args.seed)
        else:
            dataset_dict = {}
            if dataset is not None:
                if data_args.streaming:
                    dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)

                dataset_dict["train"] = dataset

            if eval_dataset is not None:
                if data_args.streaming:
                    eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)

                dataset_dict["validation"] = eval_dataset

            dataset_dict = DatasetDict(dataset_dict)

        if data_args.tokenized_path is not None:
            if training_args.should_save:
                dataset_dict.save_to_disk(data_args.tokenized_path)
luopl's avatar
luopl committed
293
294
                logger.info_rank0(f"Tokenized dataset saved at {data_args.tokenized_path}.")
                logger.info_rank0(f"Please restart the training with `tokenized_path: {data_args.tokenized_path}`.")
chenych's avatar
chenych committed
295
296
297
298
299
300

            sys.exit(0)

        dataset_module = {}
        if "train" in dataset_dict:
            dataset_module["train_dataset"] = dataset_dict["train"]
luopl's avatar
luopl committed
301

chenych's avatar
chenych committed
302
303
304
305
        if "validation" in dataset_dict:
            dataset_module["eval_dataset"] = dataset_dict["validation"]

        return dataset_module