loader.py 12 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
from typing import TYPE_CHECKING, Dict, Literal, Optional, Sequence, Union

import numpy as np
from datasets import DatasetDict, load_dataset, load_from_disk

luopl's avatar
luopl committed
22
from ..extras import logging
chenych's avatar
chenych committed
23
from ..extras.constants import FILEEXT2TYPE
luopl's avatar
luopl committed
24
from ..extras.misc import check_version, has_tokenized_data
chenych's avatar
chenych committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from .aligner import align_dataset
from .data_utils import merge_dataset, split_dataset
from .parser import get_dataset_list
from .preprocess import get_preprocess_and_print_func


if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset
    from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments

    from ..hparams import DataArguments, ModelArguments
    from .data_utils import DatasetModule
    from .parser import DatasetAttr
    from .template import Template


luopl's avatar
luopl committed
41
logger = logging.get_logger(__name__)
chenych's avatar
chenych committed
42
43
44
45
46
47
48
49


def _load_single_dataset(
    dataset_attr: "DatasetAttr",
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
luopl's avatar
luopl committed
50
51
52
    r"""
    Loads a single dataset and aligns it to the standard format.
    """
luopl's avatar
luopl committed
53
    logger.info_rank0(f"Loading dataset {dataset_attr}...")
chenych's avatar
chenych committed
54
    data_path, data_name, data_dir, data_files = None, None, None, None
luopl's avatar
luopl committed
55
    if dataset_attr.load_from in ["hf_hub", "ms_hub", "om_hub"]:
chenych's avatar
chenych committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        data_path = dataset_attr.dataset_name
        data_name = dataset_attr.subset
        data_dir = dataset_attr.folder

    elif dataset_attr.load_from == "script":
        data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
        data_name = dataset_attr.subset
        data_dir = dataset_attr.folder

    elif dataset_attr.load_from == "file":
        data_files = []
        local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
        if os.path.isdir(local_path):  # is directory
            for file_name in os.listdir(local_path):
                data_files.append(os.path.join(local_path, file_name))
        elif os.path.isfile(local_path):  # is file
            data_files.append(local_path)
        else:
luopl's avatar
luopl committed
74
            raise ValueError(f"File {local_path} not found.")
chenych's avatar
chenych committed
75

luopl's avatar
luopl committed
76
        data_path = FILEEXT2TYPE.get(os.path.splitext(data_files[0])[-1][1:], None)
chenych's avatar
chenych committed
77
78
        if data_path is None:
            raise ValueError("Allowed file types: {}.".format(",".join(FILEEXT2TYPE.keys())))
luopl's avatar
luopl committed
79
80
81

        if any(data_path != FILEEXT2TYPE.get(os.path.splitext(data_file)[-1][1:], None) for data_file in data_files):
            raise ValueError("File types should be identical.")
chenych's avatar
chenych committed
82
    else:
luopl's avatar
luopl committed
83
        raise NotImplementedError(f"Unknown load type: {dataset_attr.load_from}.")
chenych's avatar
chenych committed
84
85

    if dataset_attr.load_from == "ms_hub":
luopl's avatar
luopl committed
86
        check_version("modelscope>=1.11.0", mandatory=True)
luopl's avatar
luopl committed
87
88
        from modelscope import MsDataset  # type: ignore
        from modelscope.utils.config_ds import MS_DATASETS_CACHE  # type: ignore
chenych's avatar
chenych committed
89
90
91
92
93
94
95
96
97
98

        cache_dir = model_args.cache_dir or MS_DATASETS_CACHE
        dataset = MsDataset.load(
            dataset_name=data_path,
            subset_name=data_name,
            data_dir=data_dir,
            data_files=data_files,
            split=dataset_attr.split,
            cache_dir=cache_dir,
            token=model_args.ms_hub_token,
luopl's avatar
luopl committed
99
            use_streaming=data_args.streaming,
chenych's avatar
chenych committed
100
101
102
        )
        if isinstance(dataset, MsDataset):
            dataset = dataset.to_hf_dataset()
luopl's avatar
luopl committed
103
104

    elif dataset_attr.load_from == "om_hub":
luopl's avatar
luopl committed
105
        check_version("openmind>=0.8.0", mandatory=True)
luopl's avatar
luopl committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        from openmind import OmDataset  # type: ignore
        from openmind.utils.hub import OM_DATASETS_CACHE  # type: ignore

        cache_dir = model_args.cache_dir or OM_DATASETS_CACHE
        dataset = OmDataset.load_dataset(
            path=data_path,
            name=data_name,
            data_dir=data_dir,
            data_files=data_files,
            split=dataset_attr.split,
            cache_dir=cache_dir,
            token=model_args.om_hub_token,
            streaming=data_args.streaming,
        )
chenych's avatar
chenych committed
120
121
122
123
124
125
126
127
128
    else:
        dataset = load_dataset(
            path=data_path,
            name=data_name,
            data_dir=data_dir,
            data_files=data_files,
            split=dataset_attr.split,
            cache_dir=model_args.cache_dir,
            token=model_args.hf_hub_token,
luopl's avatar
luopl committed
129
            streaming=data_args.streaming,
luopl's avatar
luopl committed
130
131
            num_proc=data_args.preprocessing_num_workers,
            trust_remote_code=model_args.trust_remote_code,
chenych's avatar
chenych committed
132
133
134
135
        )

    if dataset_attr.num_samples is not None and not data_args.streaming:
        target_num = dataset_attr.num_samples
luopl's avatar
luopl committed
136
        indexes = np.random.permutation(len(dataset))[:target_num]  # all samples should be included
chenych's avatar
chenych committed
137
138
139
140
141
142
143
        target_num -= len(indexes)
        if target_num > 0:
            expand_indexes = np.random.choice(len(dataset), target_num)
            indexes = np.concatenate((indexes, expand_indexes), axis=0)

        assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched."
        dataset = dataset.select(indexes)
luopl's avatar
luopl committed
144
        logger.info_rank0(f"Sampled {dataset_attr.num_samples} examples from dataset {dataset_attr}.")
chenych's avatar
chenych committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

    if data_args.max_samples is not None:  # truncate dataset
        max_samples = min(data_args.max_samples, len(dataset))
        dataset = dataset.select(range(max_samples))

    return align_dataset(dataset, dataset_attr, data_args, training_args)


def _get_merged_dataset(
    dataset_names: Optional[Sequence[str]],
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
) -> Optional[Union["Dataset", "IterableDataset"]]:
luopl's avatar
luopl committed
160
161
162
    r"""
    Gets the merged datasets in the standard format.
    """
chenych's avatar
chenych committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    if dataset_names is None:
        return None

    datasets = []
    for dataset_attr in get_dataset_list(dataset_names, data_args.dataset_dir):
        if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
            raise ValueError("The dataset is not applicable in the current training stage.")

        datasets.append(_load_single_dataset(dataset_attr, model_args, data_args, training_args))

    return merge_dataset(datasets, data_args, seed=training_args.seed)


def _get_preprocessed_dataset(
    dataset: Optional[Union["Dataset", "IterableDataset"]],
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
    template: "Template",
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"] = None,
    is_eval: bool = False,
) -> Optional[Union["Dataset", "IterableDataset"]]:
luopl's avatar
luopl committed
186
187
188
    r"""
    Preprocesses the dataset, including format checking and tokenization.
    """
chenych's avatar
chenych committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    if dataset is None:
        return None

    preprocess_func, print_function = get_preprocess_and_print_func(
        data_args, stage, template, tokenizer, processor, do_generate=(training_args.predict_with_generate and is_eval)
    )
    column_names = list(next(iter(dataset)).keys())
    kwargs = {}
    if not data_args.streaming:
        kwargs = dict(
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
            desc="Running tokenizer on dataset",
        )

luopl's avatar
luopl committed
204
205
206
207
208
209
210
    dataset = dataset.map(
        preprocess_func,
        batched=True,
        batch_size=data_args.preprocessing_batch_size,
        remove_columns=column_names,
        **kwargs,
    )
chenych's avatar
chenych committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

    if training_args.should_log:
        try:
            print("eval example:" if is_eval else "training example:")
            print_function(next(iter(dataset)))
        except StopIteration:
            if stage == "pt":
                raise RuntimeError("Cannot find sufficient samples, consider increasing dataset size.")
            else:
                raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")

    return dataset


def get_dataset(
luopl's avatar
luopl committed
226
    template: "Template",
chenych's avatar
chenych committed
227
228
229
230
231
232
233
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    stage: Literal["pt", "sft", "rm", "ppo", "kto"],
    tokenizer: "PreTrainedTokenizer",
    processor: Optional["ProcessorMixin"] = None,
) -> "DatasetModule":
luopl's avatar
luopl committed
234
235
236
    r"""
    Gets the train dataset and optionally gets the evaluation dataset.
    """
chenych's avatar
chenych committed
237
238
239
    # Load tokenized dataset
    if data_args.tokenized_path is not None:
        if has_tokenized_data(data_args.tokenized_path):
luopl's avatar
luopl committed
240
            logger.warning_rank0("Loading dataset from disk will ignore other data arguments.")
luopl's avatar
luopl committed
241
            tokenized_data: Union["Dataset", "DatasetDict"] = load_from_disk(data_args.tokenized_path)
luopl's avatar
luopl committed
242
            logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
chenych's avatar
chenych committed
243
244

            dataset_module: Dict[str, "Dataset"] = {}
luopl's avatar
luopl committed
245
246
247
248
249
250
            if isinstance(tokenized_data, DatasetDict):
                if "train" in tokenized_data:
                    dataset_module["train_dataset"] = tokenized_data["train"]

                if "validation" in tokenized_data:
                    dataset_module["eval_dataset"] = tokenized_data["validation"]
luopl's avatar
luopl committed
251

luopl's avatar
luopl committed
252
253
            else:  # Dataset
                dataset_module["train_dataset"] = tokenized_data
chenych's avatar
chenych committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

            if data_args.streaming:
                dataset_module = {k: v.to_iterable_dataset() for k, v in dataset_module.items()}

            return dataset_module

        if data_args.streaming:
            raise ValueError("Turn off `streaming` when saving dataset to disk.")

    # Load and preprocess dataset
    with training_args.main_process_first(desc="load dataset"):
        dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage)
        eval_dataset = _get_merged_dataset(data_args.eval_dataset, model_args, data_args, training_args, stage)

    with training_args.main_process_first(desc="pre-process dataset"):
        dataset = _get_preprocessed_dataset(
            dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=False
        )
        eval_dataset = _get_preprocessed_dataset(
            eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
        )

        if data_args.val_size > 1e-6:
            dataset_dict = split_dataset(dataset, data_args, seed=training_args.seed)
        else:
            dataset_dict = {}
            if dataset is not None:
                if data_args.streaming:
                    dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)

                dataset_dict["train"] = dataset

            if eval_dataset is not None:
                if data_args.streaming:
                    eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)

                dataset_dict["validation"] = eval_dataset

            dataset_dict = DatasetDict(dataset_dict)

        if data_args.tokenized_path is not None:
            if training_args.should_save:
                dataset_dict.save_to_disk(data_args.tokenized_path)
luopl's avatar
luopl committed
297
298
                logger.info_rank0(f"Tokenized dataset saved at {data_args.tokenized_path}.")
                logger.info_rank0(f"Please restart the training with `tokenized_path: {data_args.tokenized_path}`.")
chenych's avatar
chenych committed
299
300
301
302
303
304

            sys.exit(0)

        dataset_module = {}
        if "train" in dataset_dict:
            dataset_module["train_dataset"] = dataset_dict["train"]
luopl's avatar
luopl committed
305

chenych's avatar
chenych committed
306
307
308
309
        if "validation" in dataset_dict:
            dataset_module["eval_dataset"] = dataset_dict["validation"]

        return dataset_module