trainer_utils.py 27.7 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# This code is inspired by the original GaLore's implementation: https://github.com/jiaweizzhao/GaLore
# and the original LoRA+'s implementation: https://github.com/nikhil-ghosh-berkeley/loraplus
# and the original BAdam's implementation: https://github.com/Ledzy/BAdam
# and the HuggingFace's TRL library: https://github.com/huggingface/trl
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

chenych's avatar
chenych committed
20
21
import json
import os
luopl's avatar
luopl committed
22
23
from collections.abc import Mapping
from pathlib import Path
chenych's avatar
chenych committed
24
from typing import TYPE_CHECKING, Any, Callable, Optional, Union
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
25
26
27

import torch
from transformers import Trainer
chenych's avatar
chenych committed
28
29
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
30
31
32
from transformers.optimization import get_scheduler
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.trainer_pt_utils import get_parameter_names
luopl's avatar
luopl committed
33
from typing_extensions import override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
34

luopl's avatar
luopl committed
35
from ..extras import logging
chenych's avatar
chenych committed
36
from ..extras.constants import IGNORE_INDEX, SWANLAB_CONFIG
luopl's avatar
luopl committed
37
from ..extras.packages import is_apollo_available, is_galore_available, is_ray_available
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
38
39
40
41
42
from ..hparams import FinetuningArguments, ModelArguments
from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params


if is_galore_available():
luopl's avatar
luopl committed
43
44
45
46
47
48
49
50
    from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit  # type: ignore


if is_apollo_available():
    from apollo_torch import APOLLOAdamW  # type: ignore


if is_ray_available():
chenych's avatar
chenych committed
51
    import ray
luopl's avatar
luopl committed
52
53
    from ray.train import RunConfig, ScalingConfig
    from ray.train.torch import TorchTrainer
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
54
55
56


if TYPE_CHECKING:
chenych's avatar
chenych committed
57
    from transformers import PreTrainedModel, TrainerCallback, TrainerState
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
58
59
    from trl import AutoModelForCausalLMWithValueHead

luopl's avatar
luopl committed
60
    from ..hparams import DataArguments, RayArguments, TrainingArguments
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
61
62


luopl's avatar
luopl committed
63
logger = logging.get_logger(__name__)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
64
65
66


class DummyOptimizer(torch.optim.Optimizer):
chenych's avatar
chenych committed
67
    r"""A dummy optimizer used for the GaLore or APOLLO algorithm."""
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
68
69

    def __init__(
chenych's avatar
chenych committed
70
        self, lr: float = 1e-3, optimizer_dict: Optional[dict["torch.nn.Parameter", "torch.optim.Optimizer"]] = None
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
71
72
73
74
75
    ) -> None:
        dummy_tensor = torch.randn(1, 1)
        self.optimizer_dict = optimizer_dict
        super().__init__([dummy_tensor], {"lr": lr})

luopl's avatar
luopl committed
76
    @override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
77
78
79
    def zero_grad(self, set_to_none: bool = True) -> None:
        pass

luopl's avatar
luopl committed
80
    @override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
81
82
83
84
85
86
87
88
    def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
        pass


def create_modelcard_and_push(
    trainer: "Trainer",
    model_args: "ModelArguments",
    data_args: "DataArguments",
luopl's avatar
luopl committed
89
    training_args: "TrainingArguments",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
90
91
92
93
94
95
96
97
    finetuning_args: "FinetuningArguments",
) -> None:
    kwargs = {
        "tasks": "text-generation",
        "finetuned_from": model_args.model_name_or_path,
        "tags": ["llama-factory", finetuning_args.finetuning_type],
    }
    if data_args.dataset is not None:
chenych's avatar
chenych committed
98
99
100
101
        kwargs["dataset"] = data_args.dataset

    if model_args.use_unsloth:
        kwargs["tags"] = kwargs["tags"] + ["unsloth"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
102
103
104
105
106
107
108
109
110
111
112
113

    if not training_args.do_train:
        pass
    elif training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(license="other", **kwargs)  # prevent from connecting to hub


def create_ref_model(
    model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: bool = False
) -> Optional[Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]]:
chenych's avatar
chenych committed
114
    r"""Create reference model for PPO/DPO training. Evaluation mode is not supported.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
115
116
117
118

    The valuehead parameter is randomly initialized since it is useless for PPO training.
    """
    if finetuning_args.ref_model is not None:
chenych's avatar
chenych committed
119
120
121
122
123
        ref_model_args = ModelArguments.copyfrom(
            model_args,
            model_name_or_path=finetuning_args.ref_model,
            adapter_name_or_path=finetuning_args.ref_model_adapters,
            quantization_bit=finetuning_args.ref_model_quantization_bit,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
124
        )
chenych's avatar
chenych committed
125
126
        ref_finetuning_args = FinetuningArguments()
        tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
127
128
129
        ref_model = load_model(
            tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
        )
luopl's avatar
luopl committed
130
        logger.info_rank0(f"Created reference model from {finetuning_args.ref_model}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
131
132
133
134
    else:
        if finetuning_args.finetuning_type == "lora":
            ref_model = None
        else:
chenych's avatar
chenych committed
135
136
137
            ref_model_args = ModelArguments.copyfrom(model_args)
            ref_finetuning_args = FinetuningArguments()
            tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
138
            ref_model = load_model(
chenych's avatar
chenych committed
139
                tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
140
            )
luopl's avatar
luopl committed
141
            logger.info_rank0("Created reference model from the model itself.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
142
143
144
145
146
147
148

    return ref_model


def create_reward_model(
    model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments"
) -> Optional["AutoModelForCausalLMWithValueHead"]:
chenych's avatar
chenych committed
149
    r"""Create reward model for PPO training."""
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
150
151
    if finetuning_args.reward_model_type == "api":
        assert finetuning_args.reward_model.startswith("http"), "Please provide full url."
luopl's avatar
luopl committed
152
        logger.info_rank0(f"Use reward server {finetuning_args.reward_model}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        return finetuning_args.reward_model
    elif finetuning_args.reward_model_type == "lora":
        model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward")
        for name, param in model.named_parameters():  # https://github.com/huggingface/peft/issues/1090
            if "default" in name:
                param.data = param.data.to(torch.float32)  # trainable params should in fp32
        vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args)
        assert vhead_params is not None, "Reward model is not correctly loaded."
        model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
        model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
        model.register_buffer(
            "default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False
        )
        model.register_buffer(
            "default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False
        )
luopl's avatar
luopl committed
169
        logger.info_rank0(f"Loaded adapter weights of reward model from {finetuning_args.reward_model}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
170
171
        return None
    else:
chenych's avatar
chenych committed
172
173
174
175
176
        reward_model_args = ModelArguments.copyfrom(
            model_args,
            model_name_or_path=finetuning_args.reward_model,
            adapter_name_or_path=finetuning_args.reward_model_adapters,
            quantization_bit=finetuning_args.reward_model_quantization_bit,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
177
        )
chenych's avatar
chenych committed
178
179
        reward_finetuning_args = FinetuningArguments()
        tokenizer = load_tokenizer(reward_model_args)["tokenizer"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
180
181
182
        reward_model = load_model(
            tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
        )
luopl's avatar
luopl committed
183
184
        logger.info_rank0(f"Loaded full weights of reward model from {finetuning_args.reward_model}")
        logger.warning_rank0("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
185
186
187
        return reward_model


chenych's avatar
chenych committed
188
189
def _get_decay_parameter_names(model: "PreTrainedModel") -> list[str]:
    r"""Return a list of names of parameters with weight decay. (weights in non-layernorm layers)."""
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
190
191
192
193
194
195
196
    decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS)
    decay_parameters = [name for name in decay_parameters if "bias" not in name]
    return decay_parameters


def _create_galore_optimizer(
    model: "PreTrainedModel",
luopl's avatar
luopl committed
197
    training_args: "TrainingArguments",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
198
199
200
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all":
chenych's avatar
chenych committed
201
        galore_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
202
203
204
    else:
        galore_targets = finetuning_args.galore_target

chenych's avatar
chenych committed
205
    galore_params: list[torch.nn.Parameter] = []
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets):
            for param in module.parameters():
                if param.requires_grad and len(param.shape) > 1:
                    galore_params.append(param)

    galore_kwargs = {
        "rank": finetuning_args.galore_rank,
        "update_proj_gap": finetuning_args.galore_update_interval,
        "scale": finetuning_args.galore_scale,
        "proj_type": finetuning_args.galore_proj_type,
    }

    id_galore_params = {id(param) for param in galore_params}
    decay_params, nodecay_params = [], []  # they are non-galore parameters
chenych's avatar
chenych committed
221
    trainable_params: list[torch.nn.Parameter] = []  # galore_params + decay_params + nodecay_params
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    decay_param_names = _get_decay_parameter_names(model)
    for name, param in model.named_parameters():
        if param.requires_grad:
            trainable_params.append(param)
            if id(param) not in id_galore_params:
                if name in decay_param_names:
                    decay_params.append(param)
                else:
                    nodecay_params.append(param)

    _, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)

    if training_args.optim == "adamw_torch":
        optim_class = GaLoreAdamW
    elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]:
        optim_class = GaLoreAdamW8bit
    elif training_args.optim == "adafactor":
        optim_class = GaLoreAdafactor
    else:
luopl's avatar
luopl committed
241
        raise NotImplementedError(f"Unknown optim: {training_args.optim}.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
242
243

    if finetuning_args.galore_layerwise:
luopl's avatar
luopl committed
244
        logger.warning_rank0("The displayed gradient norm will be all zeros in layerwise GaLore.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
245
246
247
        if training_args.gradient_accumulation_steps != 1:
            raise ValueError("Per-layer GaLore does not support gradient accumulation.")

chenych's avatar
chenych committed
248
        optimizer_dict: dict[torch.Tensor, torch.optim.Optimizer] = {}
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        for param in nodecay_params:
            param_groups = [dict(params=[param], weight_decay=0.0)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in decay_params:
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in galore_params:  # galore params have weight decay
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **galore_kwargs)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)

        def optimizer_hook(param: "torch.nn.Parameter"):
            if param.grad is not None:
                optimizer_dict[param].step()
                optimizer_dict[param].zero_grad()

        for param in trainable_params:
            param.register_post_accumulate_grad_hook(optimizer_hook)

        optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict)
    else:
        param_groups = [
            dict(params=nodecay_params, weight_decay=0.0),
            dict(params=decay_params, weight_decay=training_args.weight_decay),
            dict(params=galore_params, weight_decay=training_args.weight_decay, **galore_kwargs),
        ]
        optimizer = optim_class(param_groups, **optim_kwargs)

luopl's avatar
luopl committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    logger.info_rank0(
        f"Using GaLore optimizer with args: {galore_kwargs}. "
        "It may cause hanging at the start of training, wait patiently."
    )
    return optimizer


def _create_apollo_optimizer(
    model: "PreTrainedModel",
    training_args: "TrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    if len(finetuning_args.apollo_target) == 1 and finetuning_args.apollo_target[0] == "all":
        apollo_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
    else:
        apollo_targets = finetuning_args.apollo_target

chenych's avatar
chenych committed
293
    apollo_params: list[torch.nn.Parameter] = []
luopl's avatar
luopl committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.Linear) and any(target in name for target in apollo_targets):
            for param in module.parameters():
                if param.requires_grad and len(param.shape) > 1:
                    apollo_params.append(param)

    apollo_kwargs = {
        "rank": finetuning_args.apollo_rank,
        "proj": finetuning_args.apollo_proj,
        "proj_type": finetuning_args.apollo_proj_type,
        "update_proj_gap": finetuning_args.apollo_update_interval,
        "scale": finetuning_args.apollo_scale,
        "scale_type": finetuning_args.apollo_scale_type,
        "scale_front": finetuning_args.apollo_scale_front,
    }

    id_apollo_params = {id(param) for param in apollo_params}
    decay_params, nodecay_params = [], []  # they are non-apollo parameters
chenych's avatar
chenych committed
312
    trainable_params: list[torch.nn.Parameter] = []  # apollo_params + decay_params + nodecay_params
luopl's avatar
luopl committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    decay_param_names = _get_decay_parameter_names(model)
    for name, param in model.named_parameters():
        if param.requires_grad:
            trainable_params.append(param)
            if id(param) not in id_apollo_params:
                if name in decay_param_names:
                    decay_params.append(param)
                else:
                    nodecay_params.append(param)

    _, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)

    if training_args.optim == "adamw_torch":
        optim_class = APOLLOAdamW
    else:
        raise NotImplementedError(f"Unknown optim: {training_args.optim}.")

    if finetuning_args.apollo_layerwise:
        logger.warning_rank0("The displayed gradient norm will be all zeros in layerwise APOLLO.")
        if training_args.gradient_accumulation_steps != 1:
            raise ValueError("Per-layer APOLLO does not support gradient accumulation.")

chenych's avatar
chenych committed
335
        optimizer_dict: dict[torch.Tensor, torch.optim.Optimizer] = {}
luopl's avatar
luopl committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        for param in nodecay_params:
            param_groups = [dict(params=[param], weight_decay=0.0)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in decay_params:
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in apollo_params:  # apollo params have weight decay
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **apollo_kwargs)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)

        def optimizer_hook(param: "torch.nn.Parameter"):
            if param.grad is not None:
                optimizer_dict[param].step()
                optimizer_dict[param].zero_grad()

        for param in trainable_params:
            param.register_post_accumulate_grad_hook(optimizer_hook)

        optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict)
    else:
        param_groups = [
            dict(params=nodecay_params, weight_decay=0.0),
            dict(params=decay_params, weight_decay=training_args.weight_decay),
            dict(params=apollo_params, weight_decay=training_args.weight_decay, **apollo_kwargs),
        ]
        optimizer = optim_class(param_groups, **optim_kwargs)

    logger.info_rank0(f"Using APOLLO optimizer with args: {apollo_kwargs}.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
364
365
366
367
368
    return optimizer


def _create_loraplus_optimizer(
    model: "PreTrainedModel",
luopl's avatar
luopl committed
369
    training_args: "TrainingArguments",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
370
371
372
373
374
375
376
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    default_lr = training_args.learning_rate
    loraplus_lr = training_args.learning_rate * finetuning_args.loraplus_lr_ratio
    embedding_lr = finetuning_args.loraplus_lr_embedding

    decay_param_names = _get_decay_parameter_names(model)
chenych's avatar
chenych committed
377
    param_dict: dict[str, list[torch.nn.Parameter]] = {
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        "lora_a": [],
        "lora_b": [],
        "lora_b_nodecay": [],
        "embedding": [],
    }
    for name, param in model.named_parameters():
        if param.requires_grad:
            if "lora_embedding_B" in name:
                param_dict["embedding"].append(param)
            elif "lora_B" in name or param.ndim == 1:
                if name in decay_param_names:
                    param_dict["lora_b"].append(param)
                else:
                    param_dict["lora_b_nodecay"].append(param)
            else:
                param_dict["lora_a"].append(param)

    optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
    param_groups = [
        dict(params=param_dict["lora_a"], lr=default_lr, weight_decay=training_args.weight_decay),
        dict(params=param_dict["lora_b"], lr=loraplus_lr, weight_decay=training_args.weight_decay),
        dict(params=param_dict["lora_b_nodecay"], lr=loraplus_lr, weight_decay=0.0),
        dict(params=param_dict["embedding"], lr=embedding_lr, weight_decay=training_args.weight_decay),
    ]
    optimizer = optim_class(param_groups, **optim_kwargs)
luopl's avatar
luopl committed
403
    logger.info_rank0(f"Using LoRA+ optimizer with loraplus lr ratio {finetuning_args.loraplus_lr_ratio:.2f}.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
404
405
406
407
408
    return optimizer


def _create_badam_optimizer(
    model: "PreTrainedModel",
luopl's avatar
luopl committed
409
    training_args: "TrainingArguments",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    decay_params, nodecay_params = [], []
    decay_param_names = _get_decay_parameter_names(model)
    for name, param in model.named_parameters():
        if param.requires_grad:
            if name in decay_param_names:
                decay_params.append(param)
            else:
                nodecay_params.append(param)

    optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
    param_groups = [
        dict(params=nodecay_params, weight_decay=0.0),
        dict(params=decay_params, weight_decay=training_args.weight_decay),
    ]

    if finetuning_args.badam_mode == "layer":
luopl's avatar
luopl committed
428
        from badam import BlockOptimizer  # type: ignore
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
429
430
431
432
433
434

        base_optimizer = optim_class(param_groups, **optim_kwargs)
        optimizer = BlockOptimizer(
            base_optimizer=base_optimizer,
            named_parameters_list=list(model.named_parameters()),
            block_prefix_list=None,
chenych's avatar
chenych committed
435
            switch_block_every=finetuning_args.badam_switch_interval,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
436
437
438
            start_block=finetuning_args.badam_start_block,
            switch_mode=finetuning_args.badam_switch_mode,
            verbose=finetuning_args.badam_verbose,
chenych's avatar
chenych committed
439
            ds_zero3_enabled=is_deepspeed_zero3_enabled(),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
440
        )
luopl's avatar
luopl committed
441
        logger.info_rank0(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
442
            f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, "
chenych's avatar
chenych committed
443
            f"switch block every {finetuning_args.badam_switch_interval} steps, "
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
444
445
446
447
            f"default start block is {finetuning_args.badam_start_block}"
        )

    elif finetuning_args.badam_mode == "ratio":
luopl's avatar
luopl committed
448
        from badam import BlockOptimizerRatio  # type: ignore
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
449
450
451
452
453
454
455
456
457
458
459

        assert finetuning_args.badam_update_ratio > 1e-6
        optimizer = BlockOptimizerRatio(
            param_groups=param_groups,
            named_parameters_list=list(model.named_parameters()),
            update_ratio=finetuning_args.badam_update_ratio,
            mask_mode=finetuning_args.badam_mask_mode,
            verbose=finetuning_args.badam_verbose,
            include_embedding=False,
            **optim_kwargs,
        )
luopl's avatar
luopl committed
460
        logger.info_rank0(
chenych's avatar
chenych committed
461
            f"Using BAdam optimizer with ratio-based update, update ratio is {finetuning_args.badam_update_ratio}, "
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
462
463
464
465
466
467
            f"mask mode is {finetuning_args.badam_mask_mode}"
        )

    return optimizer


chenych's avatar
chenych committed
468
469
def _create_adam_mini_optimizer(
    model: "PreTrainedModel",
luopl's avatar
luopl committed
470
    training_args: "TrainingArguments",
chenych's avatar
chenych committed
471
) -> "torch.optim.Optimizer":
luopl's avatar
luopl committed
472
    from adam_mini import Adam_mini  # type: ignore
chenych's avatar
chenych committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

    hidden_size = getattr(model.config, "hidden_size", None)
    num_q_head = getattr(model.config, "num_attention_heads", None)
    num_kv_head = getattr(model.config, "num_key_value_heads", None)

    optimizer = Adam_mini(
        named_parameters=model.named_parameters(),
        lr=training_args.learning_rate,
        betas=(training_args.adam_beta1, training_args.adam_beta2),
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        model_sharding=is_fsdp_enabled() or is_deepspeed_zero3_enabled(),
        dim=hidden_size,
        n_heads=num_q_head,
        n_kv_heads=num_kv_head,
    )
luopl's avatar
luopl committed
489
    logger.info_rank0("Using Adam-mini optimizer.")
chenych's avatar
chenych committed
490
491
492
493
    return optimizer


def create_custom_optimizer(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
494
    model: "PreTrainedModel",
luopl's avatar
luopl committed
495
    training_args: "TrainingArguments",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
496
497
498
499
500
    finetuning_args: "FinetuningArguments",
) -> Optional["torch.optim.Optimizer"]:
    if finetuning_args.use_galore:
        return _create_galore_optimizer(model, training_args, finetuning_args)

luopl's avatar
luopl committed
501
502
503
    if finetuning_args.use_apollo:
        return _create_apollo_optimizer(model, training_args, finetuning_args)

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
504
505
506
507
508
509
    if finetuning_args.loraplus_lr_ratio is not None:
        return _create_loraplus_optimizer(model, training_args, finetuning_args)

    if finetuning_args.use_badam:
        return _create_badam_optimizer(model, training_args, finetuning_args)

chenych's avatar
chenych committed
510
511
512
    if finetuning_args.use_adam_mini:
        return _create_adam_mini_optimizer(model, training_args)

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
513
514

def create_custom_scheduler(
luopl's avatar
luopl committed
515
    training_args: "TrainingArguments",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
516
517
518
    num_training_steps: int,
    optimizer: Optional["torch.optim.Optimizer"] = None,
) -> None:
chenych's avatar
chenych committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    if training_args.lr_scheduler_type == "warmup_stable_decay":
        num_warmup_steps = training_args.get_warmup_steps(num_training_steps)
        remaining_steps = num_training_steps - num_warmup_steps
        num_stable_steps = remaining_steps // 3  # use 1/3 for stable by default
        num_decay_steps = remaining_steps - num_stable_steps
        scheduler_kwargs = training_args.lr_scheduler_kwargs or {}
        default_kwargs = {
            "num_stable_steps": num_stable_steps,
            "num_decay_steps": num_decay_steps,
        }
        for key, value in default_kwargs.items():
            if key not in scheduler_kwargs:
                scheduler_kwargs[key] = value

        training_args.lr_scheduler_kwargs = scheduler_kwargs

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
535
536
    if optimizer is not None and isinstance(optimizer, DummyOptimizer):
        optimizer_dict = optimizer.optimizer_dict
chenych's avatar
chenych committed
537
        scheduler_dict: dict[torch.nn.Parameter, torch.optim.lr_scheduler.LRScheduler] = {}
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
538
539
540
541
542
543
544

        for param in optimizer_dict.keys():
            scheduler_dict[param] = get_scheduler(
                training_args.lr_scheduler_type,
                optimizer=optimizer_dict[param],
                num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
                num_training_steps=num_training_steps,
chenych's avatar
chenych committed
545
                scheduler_specific_kwargs=training_args.lr_scheduler_kwargs,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
546
547
548
549
550
551
552
            )

        def scheduler_hook(param: "torch.nn.Parameter"):
            scheduler_dict[param].step()

        for param in optimizer_dict.keys():
            param.register_post_accumulate_grad_hook(scheduler_hook)
chenych's avatar
chenych committed
553
554
555
556


def get_batch_logps(
    logits: "torch.Tensor", labels: "torch.Tensor", label_pad_token_id: int = IGNORE_INDEX
chenych's avatar
chenych committed
557
558
) -> tuple["torch.Tensor", "torch.Tensor"]:
    r"""Compute the log probabilities of the given labels under the given logits.
chenych's avatar
chenych committed
559
560
561
562

    Returns:
        logps: A tensor of shape (batch_size,) containing the sum of log probabilities.
        valid_length: A tensor of shape (batch_size,) containing the number of non-masked tokens.
chenych's avatar
chenych committed
563

chenych's avatar
chenych committed
564
565
566
567
568
569
570
571
572
573
    """
    if logits.shape[:-1] != labels.shape:
        raise ValueError("Logits (batchsize x seqlen) and labels must have the same shape.")

    labels = labels[:, 1:].clone()
    logits = logits[:, :-1, :]
    loss_mask = labels != label_pad_token_id
    labels[labels == label_pad_token_id] = 0  # dummy token
    per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)
    return (per_token_logps * loss_mask).sum(-1), loss_mask.sum(-1)
luopl's avatar
luopl committed
574
575
576


def nested_detach(
chenych's avatar
chenych committed
577
    tensors: Union["torch.Tensor", list["torch.Tensor"], tuple["torch.Tensor"], dict[str, "torch.Tensor"]],
luopl's avatar
luopl committed
578
579
    clone: bool = False,
):
chenych's avatar
chenych committed
580
    r"""Detach `tensors` (even if it's a nested list/tuple/dict of tensors)."""
luopl's avatar
luopl committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    if isinstance(tensors, (list, tuple)):
        return type(tensors)(nested_detach(t, clone=clone) for t in tensors)
    elif isinstance(tensors, Mapping):
        return type(tensors)({k: nested_detach(t, clone=clone) for k, t in tensors.items()})

    if isinstance(tensors, torch.Tensor):
        if clone:
            return tensors.detach().clone()
        else:
            return tensors.detach()
    else:
        return tensors


def get_swanlab_callback(finetuning_args: "FinetuningArguments") -> "TrainerCallback":
chenych's avatar
chenych committed
596
    r"""Get the callback for logging to SwanLab."""
luopl's avatar
luopl committed
597
598
599
600
601
602
    import swanlab  # type: ignore
    from swanlab.integration.transformers import SwanLabCallback  # type: ignore

    if finetuning_args.swanlab_api_key is not None:
        swanlab.login(api_key=finetuning_args.swanlab_api_key)

chenych's avatar
chenych committed
603
604
605
606
607
608
609
610
611
    if finetuning_args.swanlab_lark_webhook_url is not None:
        from swanlab.plugin.notification import LarkCallback  # type: ignore

        lark_callback = LarkCallback(
            webhook_url=finetuning_args.swanlab_lark_webhook_url,
            secret=finetuning_args.swanlab_lark_secret,
        )
        swanlab.register_callbacks([lark_callback])

chenych's avatar
chenych committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
    class SwanLabCallbackExtension(SwanLabCallback):
        def setup(self, args: "TrainingArguments", state: "TrainerState", model: "PreTrainedModel", **kwargs):
            if not state.is_world_process_zero:
                return

            super().setup(args, state, model, **kwargs)
            try:
                if hasattr(self, "_swanlab"):
                    swanlab_public_config = self._swanlab.get_run().public.json()
                else:  # swanlab <= 0.4.9
                    swanlab_public_config = self._experiment.get_run().public.json()
            except Exception:
                swanlab_public_config = {}

            with open(os.path.join(args.output_dir, SWANLAB_CONFIG), "w") as f:
                f.write(json.dumps(swanlab_public_config, indent=2))

    swanlab_callback = SwanLabCallbackExtension(
luopl's avatar
luopl committed
630
631
632
633
634
        project=finetuning_args.swanlab_project,
        workspace=finetuning_args.swanlab_workspace,
        experiment_name=finetuning_args.swanlab_run_name,
        mode=finetuning_args.swanlab_mode,
        config={"Framework": "🦙LlamaFactory"},
chenych's avatar
chenych committed
635
        logdir=finetuning_args.swanlab_logdir,
luopl's avatar
luopl committed
636
637
638
639
640
641
    )
    return swanlab_callback


def get_ray_trainer(
    training_function: Callable,
chenych's avatar
chenych committed
642
    train_loop_config: dict[str, Any],
luopl's avatar
luopl committed
643
644
645
646
647
    ray_args: "RayArguments",
) -> "TorchTrainer":
    if not ray_args.use_ray:
        raise ValueError("Ray was not enabled. Please set `USE_RAY=1` to enable ray.")

chenych's avatar
chenych committed
648
649
650
    if ray_args.ray_init_kwargs is not None:
        ray.init(**ray_args.ray_init_kwargs)

luopl's avatar
luopl committed
651
652
653
654
655
656
657
658
659
660
661
    trainer = TorchTrainer(
        training_function,
        train_loop_config=train_loop_config,
        scaling_config=ScalingConfig(
            num_workers=ray_args.ray_num_workers,
            resources_per_worker=ray_args.resources_per_worker,
            placement_strategy=ray_args.placement_strategy,
            use_gpu=True,
        ),
        run_config=RunConfig(
            name=ray_args.ray_run_name,
chenych's avatar
chenych committed
662
            storage_path=Path(ray_args.ray_storage_path).absolute().as_posix(),
luopl's avatar
luopl committed
663
664
665
        ),
    )
    return trainer