trainer_utils.py 19.2 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the original GaLore's implementation: https://github.com/jiaweizzhao/GaLore
# and the original LoRA+'s implementation: https://github.com/nikhil-ghosh-berkeley/loraplus
# and the original BAdam's implementation: https://github.com/Ledzy/BAdam
# and the HuggingFace's TRL library: https://github.com/huggingface/trl
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
21
22
23

import torch
from transformers import Trainer
chenych's avatar
chenych committed
24
25
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
26
27
28
from transformers.optimization import get_scheduler
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.trainer_pt_utils import get_parameter_names
luopl's avatar
luopl committed
29
from typing_extensions import override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
30

luopl's avatar
luopl committed
31
from ..extras import logging
chenych's avatar
chenych committed
32
from ..extras.constants import IGNORE_INDEX
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
33
34
35
36
37
38
39
40
41
42
from ..extras.packages import is_galore_available
from ..hparams import FinetuningArguments, ModelArguments
from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params


if is_galore_available():
    from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit


if TYPE_CHECKING:
chenych's avatar
chenych committed
43
    from transformers import PreTrainedModel, Seq2SeqTrainingArguments
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
44
45
46
47
48
    from trl import AutoModelForCausalLMWithValueHead

    from ..hparams import DataArguments


luopl's avatar
luopl committed
49
logger = logging.get_logger(__name__)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63


class DummyOptimizer(torch.optim.Optimizer):
    r"""
    A dummy optimizer used for the GaLore algorithm.
    """

    def __init__(
        self, lr: float = 1e-3, optimizer_dict: Optional[Dict["torch.nn.Parameter", "torch.optim.Optimizer"]] = None
    ) -> None:
        dummy_tensor = torch.randn(1, 1)
        self.optimizer_dict = optimizer_dict
        super().__init__([dummy_tensor], {"lr": lr})

luopl's avatar
luopl committed
64
    @override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
65
66
67
    def zero_grad(self, set_to_none: bool = True) -> None:
        pass

luopl's avatar
luopl committed
68
    @override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
        pass


def create_modelcard_and_push(
    trainer: "Trainer",
    model_args: "ModelArguments",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> None:
    kwargs = {
        "tasks": "text-generation",
        "finetuned_from": model_args.model_name_or_path,
        "tags": ["llama-factory", finetuning_args.finetuning_type],
    }
    if data_args.dataset is not None:
chenych's avatar
chenych committed
86
87
88
89
        kwargs["dataset"] = data_args.dataset

    if model_args.use_unsloth:
        kwargs["tags"] = kwargs["tags"] + ["unsloth"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    if not training_args.do_train:
        pass
    elif training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(license="other", **kwargs)  # prevent from connecting to hub


def create_ref_model(
    model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: bool = False
) -> Optional[Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]]:
    r"""
    Creates reference model for PPO/DPO training. Evaluation mode is not supported.

    The valuehead parameter is randomly initialized since it is useless for PPO training.
    """
    if finetuning_args.ref_model is not None:
chenych's avatar
chenych committed
108
109
110
111
112
        ref_model_args = ModelArguments.copyfrom(
            model_args,
            model_name_or_path=finetuning_args.ref_model,
            adapter_name_or_path=finetuning_args.ref_model_adapters,
            quantization_bit=finetuning_args.ref_model_quantization_bit,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
113
        )
chenych's avatar
chenych committed
114
115
        ref_finetuning_args = FinetuningArguments()
        tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
116
117
118
        ref_model = load_model(
            tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
        )
luopl's avatar
luopl committed
119
        logger.info_rank0(f"Created reference model from {finetuning_args.ref_model}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
120
121
122
123
    else:
        if finetuning_args.finetuning_type == "lora":
            ref_model = None
        else:
chenych's avatar
chenych committed
124
125
126
            ref_model_args = ModelArguments.copyfrom(model_args)
            ref_finetuning_args = FinetuningArguments()
            tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
127
            ref_model = load_model(
chenych's avatar
chenych committed
128
                tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
129
            )
luopl's avatar
luopl committed
130
            logger.info_rank0("Created reference model from the model itself.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
131
132
133
134
135
136
137
138
139
140
141
142

    return ref_model


def create_reward_model(
    model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments"
) -> Optional["AutoModelForCausalLMWithValueHead"]:
    r"""
    Creates reward model for PPO training.
    """
    if finetuning_args.reward_model_type == "api":
        assert finetuning_args.reward_model.startswith("http"), "Please provide full url."
luopl's avatar
luopl committed
143
        logger.info_rank0(f"Use reward server {finetuning_args.reward_model}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        return finetuning_args.reward_model
    elif finetuning_args.reward_model_type == "lora":
        model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward")
        for name, param in model.named_parameters():  # https://github.com/huggingface/peft/issues/1090
            if "default" in name:
                param.data = param.data.to(torch.float32)  # trainable params should in fp32
        vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args)
        assert vhead_params is not None, "Reward model is not correctly loaded."
        model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
        model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
        model.register_buffer(
            "default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False
        )
        model.register_buffer(
            "default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False
        )
luopl's avatar
luopl committed
160
        logger.info_rank0(f"Loaded adapter weights of reward model from {finetuning_args.reward_model}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
161
162
        return None
    else:
chenych's avatar
chenych committed
163
164
165
166
167
        reward_model_args = ModelArguments.copyfrom(
            model_args,
            model_name_or_path=finetuning_args.reward_model,
            adapter_name_or_path=finetuning_args.reward_model_adapters,
            quantization_bit=finetuning_args.reward_model_quantization_bit,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
168
        )
chenych's avatar
chenych committed
169
170
        reward_finetuning_args = FinetuningArguments()
        tokenizer = load_tokenizer(reward_model_args)["tokenizer"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
171
172
173
        reward_model = load_model(
            tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
        )
luopl's avatar
luopl committed
174
175
        logger.info_rank0(f"Loaded full weights of reward model from {finetuning_args.reward_model}")
        logger.warning_rank0("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        return reward_model


def _get_decay_parameter_names(model: "PreTrainedModel") -> List[str]:
    r"""
    Returns a list of names of parameters with weight decay. (weights in non-layernorm layers)
    """
    decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS)
    decay_parameters = [name for name in decay_parameters if "bias" not in name]
    return decay_parameters


def _create_galore_optimizer(
    model: "PreTrainedModel",
    training_args: "Seq2SeqTrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all":
chenych's avatar
chenych committed
194
        galore_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    else:
        galore_targets = finetuning_args.galore_target

    galore_params: List["torch.nn.Parameter"] = []
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets):
            for param in module.parameters():
                if param.requires_grad and len(param.shape) > 1:
                    galore_params.append(param)

    galore_kwargs = {
        "rank": finetuning_args.galore_rank,
        "update_proj_gap": finetuning_args.galore_update_interval,
        "scale": finetuning_args.galore_scale,
        "proj_type": finetuning_args.galore_proj_type,
    }

    id_galore_params = {id(param) for param in galore_params}
    decay_params, nodecay_params = [], []  # they are non-galore parameters
    trainable_params: List["torch.nn.Parameter"] = []  # galore_params + decay_params + nodecay_params
    decay_param_names = _get_decay_parameter_names(model)
    for name, param in model.named_parameters():
        if param.requires_grad:
            trainable_params.append(param)
            if id(param) not in id_galore_params:
                if name in decay_param_names:
                    decay_params.append(param)
                else:
                    nodecay_params.append(param)

    _, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)

    if training_args.optim == "adamw_torch":
        optim_class = GaLoreAdamW
    elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]:
        optim_class = GaLoreAdamW8bit
    elif training_args.optim == "adafactor":
        optim_class = GaLoreAdafactor
    else:
luopl's avatar
luopl committed
234
        raise NotImplementedError(f"Unknow optim: {training_args.optim}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

    if finetuning_args.galore_layerwise:
        if training_args.gradient_accumulation_steps != 1:
            raise ValueError("Per-layer GaLore does not support gradient accumulation.")

        optimizer_dict: Dict["torch.Tensor", "torch.optim.Optimizer"] = {}
        for param in nodecay_params:
            param_groups = [dict(params=[param], weight_decay=0.0)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in decay_params:
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in galore_params:  # galore params have weight decay
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **galore_kwargs)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)

        def optimizer_hook(param: "torch.nn.Parameter"):
            if param.grad is not None:
                optimizer_dict[param].step()
                optimizer_dict[param].zero_grad()

        for param in trainable_params:
            param.register_post_accumulate_grad_hook(optimizer_hook)

        optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict)
    else:
        param_groups = [
            dict(params=nodecay_params, weight_decay=0.0),
            dict(params=decay_params, weight_decay=training_args.weight_decay),
            dict(params=galore_params, weight_decay=training_args.weight_decay, **galore_kwargs),
        ]
        optimizer = optim_class(param_groups, **optim_kwargs)

luopl's avatar
luopl committed
268
    logger.info_rank0("Using GaLore optimizer, may cause hanging at the start of training, wait patiently.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    return optimizer


def _create_loraplus_optimizer(
    model: "PreTrainedModel",
    training_args: "Seq2SeqTrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    default_lr = training_args.learning_rate
    loraplus_lr = training_args.learning_rate * finetuning_args.loraplus_lr_ratio
    embedding_lr = finetuning_args.loraplus_lr_embedding

    decay_param_names = _get_decay_parameter_names(model)
    param_dict: Dict[str, List["torch.nn.Parameter"]] = {
        "lora_a": [],
        "lora_b": [],
        "lora_b_nodecay": [],
        "embedding": [],
    }
    for name, param in model.named_parameters():
        if param.requires_grad:
            if "lora_embedding_B" in name:
                param_dict["embedding"].append(param)
            elif "lora_B" in name or param.ndim == 1:
                if name in decay_param_names:
                    param_dict["lora_b"].append(param)
                else:
                    param_dict["lora_b_nodecay"].append(param)
            else:
                param_dict["lora_a"].append(param)

    optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
    param_groups = [
        dict(params=param_dict["lora_a"], lr=default_lr, weight_decay=training_args.weight_decay),
        dict(params=param_dict["lora_b"], lr=loraplus_lr, weight_decay=training_args.weight_decay),
        dict(params=param_dict["lora_b_nodecay"], lr=loraplus_lr, weight_decay=0.0),
        dict(params=param_dict["embedding"], lr=embedding_lr, weight_decay=training_args.weight_decay),
    ]
    optimizer = optim_class(param_groups, **optim_kwargs)
luopl's avatar
luopl committed
308
    logger.info_rank0(f"Using LoRA+ optimizer with loraplus lr ratio {finetuning_args.loraplus_lr_ratio:.2f}.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    return optimizer


def _create_badam_optimizer(
    model: "PreTrainedModel",
    training_args: "Seq2SeqTrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    decay_params, nodecay_params = [], []
    decay_param_names = _get_decay_parameter_names(model)
    for name, param in model.named_parameters():
        if param.requires_grad:
            if name in decay_param_names:
                decay_params.append(param)
            else:
                nodecay_params.append(param)

    optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
    param_groups = [
        dict(params=nodecay_params, weight_decay=0.0),
        dict(params=decay_params, weight_decay=training_args.weight_decay),
    ]

    if finetuning_args.badam_mode == "layer":
        from badam import BlockOptimizer

        base_optimizer = optim_class(param_groups, **optim_kwargs)
        optimizer = BlockOptimizer(
            base_optimizer=base_optimizer,
            named_parameters_list=list(model.named_parameters()),
            block_prefix_list=None,
chenych's avatar
chenych committed
340
            switch_block_every=finetuning_args.badam_switch_interval,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
341
342
343
            start_block=finetuning_args.badam_start_block,
            switch_mode=finetuning_args.badam_switch_mode,
            verbose=finetuning_args.badam_verbose,
chenych's avatar
chenych committed
344
            ds_zero3_enabled=is_deepspeed_zero3_enabled(),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
345
        )
luopl's avatar
luopl committed
346
        logger.info_rank0(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
347
            f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, "
chenych's avatar
chenych committed
348
            f"switch block every {finetuning_args.badam_switch_interval} steps, "
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
            f"default start block is {finetuning_args.badam_start_block}"
        )

    elif finetuning_args.badam_mode == "ratio":
        from badam import BlockOptimizerRatio

        assert finetuning_args.badam_update_ratio > 1e-6
        optimizer = BlockOptimizerRatio(
            param_groups=param_groups,
            named_parameters_list=list(model.named_parameters()),
            update_ratio=finetuning_args.badam_update_ratio,
            mask_mode=finetuning_args.badam_mask_mode,
            verbose=finetuning_args.badam_verbose,
            include_embedding=False,
            **optim_kwargs,
        )
luopl's avatar
luopl committed
365
        logger.info_rank0(
chenych's avatar
chenych committed
366
            f"Using BAdam optimizer with ratio-based update, update ratio is {finetuning_args.badam_update_ratio}, "
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
367
368
369
370
371
372
            f"mask mode is {finetuning_args.badam_mask_mode}"
        )

    return optimizer


chenych's avatar
chenych committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def _create_adam_mini_optimizer(
    model: "PreTrainedModel",
    training_args: "Seq2SeqTrainingArguments",
) -> "torch.optim.Optimizer":
    from adam_mini import Adam_mini

    hidden_size = getattr(model.config, "hidden_size", None)
    num_q_head = getattr(model.config, "num_attention_heads", None)
    num_kv_head = getattr(model.config, "num_key_value_heads", None)

    optimizer = Adam_mini(
        named_parameters=model.named_parameters(),
        lr=training_args.learning_rate,
        betas=(training_args.adam_beta1, training_args.adam_beta2),
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        model_sharding=is_fsdp_enabled() or is_deepspeed_zero3_enabled(),
        dim=hidden_size,
        n_heads=num_q_head,
        n_kv_heads=num_kv_head,
    )
luopl's avatar
luopl committed
394
    logger.info_rank0("Using Adam-mini optimizer.")
chenych's avatar
chenych committed
395
396
397
398
    return optimizer


def create_custom_optimizer(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
399
400
401
402
403
404
405
406
407
408
409
410
411
    model: "PreTrainedModel",
    training_args: "Seq2SeqTrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> Optional["torch.optim.Optimizer"]:
    if finetuning_args.use_galore:
        return _create_galore_optimizer(model, training_args, finetuning_args)

    if finetuning_args.loraplus_lr_ratio is not None:
        return _create_loraplus_optimizer(model, training_args, finetuning_args)

    if finetuning_args.use_badam:
        return _create_badam_optimizer(model, training_args, finetuning_args)

chenych's avatar
chenych committed
412
413
414
    if finetuning_args.use_adam_mini:
        return _create_adam_mini_optimizer(model, training_args)

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

def create_custom_scheduler(
    training_args: "Seq2SeqTrainingArguments",
    num_training_steps: int,
    optimizer: Optional["torch.optim.Optimizer"] = None,
) -> None:
    if optimizer is not None and isinstance(optimizer, DummyOptimizer):
        optimizer_dict = optimizer.optimizer_dict
        scheduler_dict: Dict["torch.nn.Parameter", "torch.optim.lr_scheduler.LRScheduler"] = {}

        for param in optimizer_dict.keys():
            scheduler_dict[param] = get_scheduler(
                training_args.lr_scheduler_type,
                optimizer=optimizer_dict[param],
                num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
                num_training_steps=num_training_steps,
chenych's avatar
chenych committed
431
                scheduler_specific_kwargs=training_args.lr_scheduler_kwargs,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
432
433
434
435
436
437
438
            )

        def scheduler_hook(param: "torch.nn.Parameter"):
            scheduler_dict[param].step()

        for param in optimizer_dict.keys():
            param.register_post_accumulate_grad_hook(scheduler_hook)
chenych's avatar
chenych committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459


def get_batch_logps(
    logits: "torch.Tensor", labels: "torch.Tensor", label_pad_token_id: int = IGNORE_INDEX
) -> Tuple["torch.Tensor", "torch.Tensor"]:
    r"""
    Computes the log probabilities of the given labels under the given logits.

    Returns:
        logps: A tensor of shape (batch_size,) containing the sum of log probabilities.
        valid_length: A tensor of shape (batch_size,) containing the number of non-masked tokens.
    """
    if logits.shape[:-1] != labels.shape:
        raise ValueError("Logits (batchsize x seqlen) and labels must have the same shape.")

    labels = labels[:, 1:].clone()
    logits = logits[:, :-1, :]
    loss_mask = labels != label_pad_token_id
    labels[labels == label_pad_token_id] = 0  # dummy token
    per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)
    return (per_token_logps * loss_mask).sum(-1), loss_mask.sum(-1)