trainer_utils.py 25.7 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the original GaLore's implementation: https://github.com/jiaweizzhao/GaLore
# and the original LoRA+'s implementation: https://github.com/nikhil-ghosh-berkeley/loraplus
# and the original BAdam's implementation: https://github.com/Ledzy/BAdam
# and the HuggingFace's TRL library: https://github.com/huggingface/trl
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
20
21
22
from collections.abc import Mapping
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
23
24
25

import torch
from transformers import Trainer
chenych's avatar
chenych committed
26
27
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
28
29
30
from transformers.optimization import get_scheduler
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.trainer_pt_utils import get_parameter_names
luopl's avatar
luopl committed
31
from typing_extensions import override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
32

luopl's avatar
luopl committed
33
from ..extras import logging
chenych's avatar
chenych committed
34
from ..extras.constants import IGNORE_INDEX
luopl's avatar
luopl committed
35
from ..extras.packages import is_apollo_available, is_galore_available, is_ray_available
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
36
37
38
39
40
from ..hparams import FinetuningArguments, ModelArguments
from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params


if is_galore_available():
luopl's avatar
luopl committed
41
42
43
44
45
46
47
48
49
50
    from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit  # type: ignore


if is_apollo_available():
    from apollo_torch import APOLLOAdamW  # type: ignore


if is_ray_available():
    from ray.train import RunConfig, ScalingConfig
    from ray.train.torch import TorchTrainer
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
51
52
53


if TYPE_CHECKING:
luopl's avatar
luopl committed
54
    from transformers import PreTrainedModel, TrainerCallback
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
55
56
    from trl import AutoModelForCausalLMWithValueHead

luopl's avatar
luopl committed
57
    from ..hparams import DataArguments, RayArguments, TrainingArguments
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
58
59


luopl's avatar
luopl committed
60
logger = logging.get_logger(__name__)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
61
62
63
64


class DummyOptimizer(torch.optim.Optimizer):
    r"""
luopl's avatar
luopl committed
65
    A dummy optimizer used for the GaLore or APOLLO algorithm.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
66
67
68
69
70
71
72
73
74
    """

    def __init__(
        self, lr: float = 1e-3, optimizer_dict: Optional[Dict["torch.nn.Parameter", "torch.optim.Optimizer"]] = None
    ) -> None:
        dummy_tensor = torch.randn(1, 1)
        self.optimizer_dict = optimizer_dict
        super().__init__([dummy_tensor], {"lr": lr})

luopl's avatar
luopl committed
75
    @override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
76
77
78
    def zero_grad(self, set_to_none: bool = True) -> None:
        pass

luopl's avatar
luopl committed
79
    @override
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
80
81
82
83
84
85
86
87
    def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
        pass


def create_modelcard_and_push(
    trainer: "Trainer",
    model_args: "ModelArguments",
    data_args: "DataArguments",
luopl's avatar
luopl committed
88
    training_args: "TrainingArguments",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
89
90
91
92
93
94
95
96
    finetuning_args: "FinetuningArguments",
) -> None:
    kwargs = {
        "tasks": "text-generation",
        "finetuned_from": model_args.model_name_or_path,
        "tags": ["llama-factory", finetuning_args.finetuning_type],
    }
    if data_args.dataset is not None:
chenych's avatar
chenych committed
97
98
99
100
        kwargs["dataset"] = data_args.dataset

    if model_args.use_unsloth:
        kwargs["tags"] = kwargs["tags"] + ["unsloth"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    if not training_args.do_train:
        pass
    elif training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(license="other", **kwargs)  # prevent from connecting to hub


def create_ref_model(
    model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: bool = False
) -> Optional[Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]]:
    r"""
    Creates reference model for PPO/DPO training. Evaluation mode is not supported.

    The valuehead parameter is randomly initialized since it is useless for PPO training.
    """
    if finetuning_args.ref_model is not None:
chenych's avatar
chenych committed
119
120
121
122
123
        ref_model_args = ModelArguments.copyfrom(
            model_args,
            model_name_or_path=finetuning_args.ref_model,
            adapter_name_or_path=finetuning_args.ref_model_adapters,
            quantization_bit=finetuning_args.ref_model_quantization_bit,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
124
        )
chenych's avatar
chenych committed
125
126
        ref_finetuning_args = FinetuningArguments()
        tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
127
128
129
        ref_model = load_model(
            tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
        )
luopl's avatar
luopl committed
130
        logger.info_rank0(f"Created reference model from {finetuning_args.ref_model}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
131
132
133
134
    else:
        if finetuning_args.finetuning_type == "lora":
            ref_model = None
        else:
chenych's avatar
chenych committed
135
136
137
            ref_model_args = ModelArguments.copyfrom(model_args)
            ref_finetuning_args = FinetuningArguments()
            tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
138
            ref_model = load_model(
chenych's avatar
chenych committed
139
                tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
140
            )
luopl's avatar
luopl committed
141
            logger.info_rank0("Created reference model from the model itself.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
142
143
144
145
146
147
148
149
150
151
152
153

    return ref_model


def create_reward_model(
    model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments"
) -> Optional["AutoModelForCausalLMWithValueHead"]:
    r"""
    Creates reward model for PPO training.
    """
    if finetuning_args.reward_model_type == "api":
        assert finetuning_args.reward_model.startswith("http"), "Please provide full url."
luopl's avatar
luopl committed
154
        logger.info_rank0(f"Use reward server {finetuning_args.reward_model}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        return finetuning_args.reward_model
    elif finetuning_args.reward_model_type == "lora":
        model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward")
        for name, param in model.named_parameters():  # https://github.com/huggingface/peft/issues/1090
            if "default" in name:
                param.data = param.data.to(torch.float32)  # trainable params should in fp32
        vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args)
        assert vhead_params is not None, "Reward model is not correctly loaded."
        model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
        model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
        model.register_buffer(
            "default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False
        )
        model.register_buffer(
            "default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False
        )
luopl's avatar
luopl committed
171
        logger.info_rank0(f"Loaded adapter weights of reward model from {finetuning_args.reward_model}")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
172
173
        return None
    else:
chenych's avatar
chenych committed
174
175
176
177
178
        reward_model_args = ModelArguments.copyfrom(
            model_args,
            model_name_or_path=finetuning_args.reward_model,
            adapter_name_or_path=finetuning_args.reward_model_adapters,
            quantization_bit=finetuning_args.reward_model_quantization_bit,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
179
        )
chenych's avatar
chenych committed
180
181
        reward_finetuning_args = FinetuningArguments()
        tokenizer = load_tokenizer(reward_model_args)["tokenizer"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
182
183
184
        reward_model = load_model(
            tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
        )
luopl's avatar
luopl committed
185
186
        logger.info_rank0(f"Loaded full weights of reward model from {finetuning_args.reward_model}")
        logger.warning_rank0("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        return reward_model


def _get_decay_parameter_names(model: "PreTrainedModel") -> List[str]:
    r"""
    Returns a list of names of parameters with weight decay. (weights in non-layernorm layers)
    """
    decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS)
    decay_parameters = [name for name in decay_parameters if "bias" not in name]
    return decay_parameters


def _create_galore_optimizer(
    model: "PreTrainedModel",
luopl's avatar
luopl committed
201
    training_args: "TrainingArguments",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
202
203
204
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all":
chenych's avatar
chenych committed
205
        galore_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    else:
        galore_targets = finetuning_args.galore_target

    galore_params: List["torch.nn.Parameter"] = []
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets):
            for param in module.parameters():
                if param.requires_grad and len(param.shape) > 1:
                    galore_params.append(param)

    galore_kwargs = {
        "rank": finetuning_args.galore_rank,
        "update_proj_gap": finetuning_args.galore_update_interval,
        "scale": finetuning_args.galore_scale,
        "proj_type": finetuning_args.galore_proj_type,
    }

    id_galore_params = {id(param) for param in galore_params}
    decay_params, nodecay_params = [], []  # they are non-galore parameters
    trainable_params: List["torch.nn.Parameter"] = []  # galore_params + decay_params + nodecay_params
    decay_param_names = _get_decay_parameter_names(model)
    for name, param in model.named_parameters():
        if param.requires_grad:
            trainable_params.append(param)
            if id(param) not in id_galore_params:
                if name in decay_param_names:
                    decay_params.append(param)
                else:
                    nodecay_params.append(param)

    _, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)

    if training_args.optim == "adamw_torch":
        optim_class = GaLoreAdamW
    elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]:
        optim_class = GaLoreAdamW8bit
    elif training_args.optim == "adafactor":
        optim_class = GaLoreAdafactor
    else:
luopl's avatar
luopl committed
245
        raise NotImplementedError(f"Unknown optim: {training_args.optim}.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
246
247

    if finetuning_args.galore_layerwise:
luopl's avatar
luopl committed
248
        logger.warning_rank0("The displayed gradient norm will be all zeros in layerwise GaLore.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        if training_args.gradient_accumulation_steps != 1:
            raise ValueError("Per-layer GaLore does not support gradient accumulation.")

        optimizer_dict: Dict["torch.Tensor", "torch.optim.Optimizer"] = {}
        for param in nodecay_params:
            param_groups = [dict(params=[param], weight_decay=0.0)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in decay_params:
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in galore_params:  # galore params have weight decay
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **galore_kwargs)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)

        def optimizer_hook(param: "torch.nn.Parameter"):
            if param.grad is not None:
                optimizer_dict[param].step()
                optimizer_dict[param].zero_grad()

        for param in trainable_params:
            param.register_post_accumulate_grad_hook(optimizer_hook)

        optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict)
    else:
        param_groups = [
            dict(params=nodecay_params, weight_decay=0.0),
            dict(params=decay_params, weight_decay=training_args.weight_decay),
            dict(params=galore_params, weight_decay=training_args.weight_decay, **galore_kwargs),
        ]
        optimizer = optim_class(param_groups, **optim_kwargs)

luopl's avatar
luopl committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    logger.info_rank0(
        f"Using GaLore optimizer with args: {galore_kwargs}. "
        "It may cause hanging at the start of training, wait patiently."
    )
    return optimizer


def _create_apollo_optimizer(
    model: "PreTrainedModel",
    training_args: "TrainingArguments",
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    if len(finetuning_args.apollo_target) == 1 and finetuning_args.apollo_target[0] == "all":
        apollo_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
    else:
        apollo_targets = finetuning_args.apollo_target

    apollo_params: List["torch.nn.Parameter"] = []
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.Linear) and any(target in name for target in apollo_targets):
            for param in module.parameters():
                if param.requires_grad and len(param.shape) > 1:
                    apollo_params.append(param)

    apollo_kwargs = {
        "rank": finetuning_args.apollo_rank,
        "proj": finetuning_args.apollo_proj,
        "proj_type": finetuning_args.apollo_proj_type,
        "update_proj_gap": finetuning_args.apollo_update_interval,
        "scale": finetuning_args.apollo_scale,
        "scale_type": finetuning_args.apollo_scale_type,
        "scale_front": finetuning_args.apollo_scale_front,
    }

    id_apollo_params = {id(param) for param in apollo_params}
    decay_params, nodecay_params = [], []  # they are non-apollo parameters
    trainable_params: List["torch.nn.Parameter"] = []  # apollo_params + decay_params + nodecay_params
    decay_param_names = _get_decay_parameter_names(model)
    for name, param in model.named_parameters():
        if param.requires_grad:
            trainable_params.append(param)
            if id(param) not in id_apollo_params:
                if name in decay_param_names:
                    decay_params.append(param)
                else:
                    nodecay_params.append(param)

    _, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)

    if training_args.optim == "adamw_torch":
        optim_class = APOLLOAdamW
    else:
        raise NotImplementedError(f"Unknown optim: {training_args.optim}.")

    if finetuning_args.apollo_layerwise:
        logger.warning_rank0("The displayed gradient norm will be all zeros in layerwise APOLLO.")
        if training_args.gradient_accumulation_steps != 1:
            raise ValueError("Per-layer APOLLO does not support gradient accumulation.")

        optimizer_dict: Dict["torch.Tensor", "torch.optim.Optimizer"] = {}
        for param in nodecay_params:
            param_groups = [dict(params=[param], weight_decay=0.0)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in decay_params:
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
        for param in apollo_params:  # apollo params have weight decay
            param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **apollo_kwargs)]
            optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)

        def optimizer_hook(param: "torch.nn.Parameter"):
            if param.grad is not None:
                optimizer_dict[param].step()
                optimizer_dict[param].zero_grad()

        for param in trainable_params:
            param.register_post_accumulate_grad_hook(optimizer_hook)

        optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict)
    else:
        param_groups = [
            dict(params=nodecay_params, weight_decay=0.0),
            dict(params=decay_params, weight_decay=training_args.weight_decay),
            dict(params=apollo_params, weight_decay=training_args.weight_decay, **apollo_kwargs),
        ]
        optimizer = optim_class(param_groups, **optim_kwargs)

    logger.info_rank0(f"Using APOLLO optimizer with args: {apollo_kwargs}.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
368
369
370
371
372
    return optimizer


def _create_loraplus_optimizer(
    model: "PreTrainedModel",
luopl's avatar
luopl committed
373
    training_args: "TrainingArguments",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    default_lr = training_args.learning_rate
    loraplus_lr = training_args.learning_rate * finetuning_args.loraplus_lr_ratio
    embedding_lr = finetuning_args.loraplus_lr_embedding

    decay_param_names = _get_decay_parameter_names(model)
    param_dict: Dict[str, List["torch.nn.Parameter"]] = {
        "lora_a": [],
        "lora_b": [],
        "lora_b_nodecay": [],
        "embedding": [],
    }
    for name, param in model.named_parameters():
        if param.requires_grad:
            if "lora_embedding_B" in name:
                param_dict["embedding"].append(param)
            elif "lora_B" in name or param.ndim == 1:
                if name in decay_param_names:
                    param_dict["lora_b"].append(param)
                else:
                    param_dict["lora_b_nodecay"].append(param)
            else:
                param_dict["lora_a"].append(param)

    optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
    param_groups = [
        dict(params=param_dict["lora_a"], lr=default_lr, weight_decay=training_args.weight_decay),
        dict(params=param_dict["lora_b"], lr=loraplus_lr, weight_decay=training_args.weight_decay),
        dict(params=param_dict["lora_b_nodecay"], lr=loraplus_lr, weight_decay=0.0),
        dict(params=param_dict["embedding"], lr=embedding_lr, weight_decay=training_args.weight_decay),
    ]
    optimizer = optim_class(param_groups, **optim_kwargs)
luopl's avatar
luopl committed
407
    logger.info_rank0(f"Using LoRA+ optimizer with loraplus lr ratio {finetuning_args.loraplus_lr_ratio:.2f}.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
408
409
410
411
412
    return optimizer


def _create_badam_optimizer(
    model: "PreTrainedModel",
luopl's avatar
luopl committed
413
    training_args: "TrainingArguments",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
    decay_params, nodecay_params = [], []
    decay_param_names = _get_decay_parameter_names(model)
    for name, param in model.named_parameters():
        if param.requires_grad:
            if name in decay_param_names:
                decay_params.append(param)
            else:
                nodecay_params.append(param)

    optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
    param_groups = [
        dict(params=nodecay_params, weight_decay=0.0),
        dict(params=decay_params, weight_decay=training_args.weight_decay),
    ]

    if finetuning_args.badam_mode == "layer":
luopl's avatar
luopl committed
432
        from badam import BlockOptimizer  # type: ignore
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
433
434
435
436
437
438

        base_optimizer = optim_class(param_groups, **optim_kwargs)
        optimizer = BlockOptimizer(
            base_optimizer=base_optimizer,
            named_parameters_list=list(model.named_parameters()),
            block_prefix_list=None,
chenych's avatar
chenych committed
439
            switch_block_every=finetuning_args.badam_switch_interval,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
440
441
442
            start_block=finetuning_args.badam_start_block,
            switch_mode=finetuning_args.badam_switch_mode,
            verbose=finetuning_args.badam_verbose,
chenych's avatar
chenych committed
443
            ds_zero3_enabled=is_deepspeed_zero3_enabled(),
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
444
        )
luopl's avatar
luopl committed
445
        logger.info_rank0(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
446
            f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, "
chenych's avatar
chenych committed
447
            f"switch block every {finetuning_args.badam_switch_interval} steps, "
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
448
449
450
451
            f"default start block is {finetuning_args.badam_start_block}"
        )

    elif finetuning_args.badam_mode == "ratio":
luopl's avatar
luopl committed
452
        from badam import BlockOptimizerRatio  # type: ignore
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
453
454
455
456
457
458
459
460
461
462
463

        assert finetuning_args.badam_update_ratio > 1e-6
        optimizer = BlockOptimizerRatio(
            param_groups=param_groups,
            named_parameters_list=list(model.named_parameters()),
            update_ratio=finetuning_args.badam_update_ratio,
            mask_mode=finetuning_args.badam_mask_mode,
            verbose=finetuning_args.badam_verbose,
            include_embedding=False,
            **optim_kwargs,
        )
luopl's avatar
luopl committed
464
        logger.info_rank0(
chenych's avatar
chenych committed
465
            f"Using BAdam optimizer with ratio-based update, update ratio is {finetuning_args.badam_update_ratio}, "
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
466
467
468
469
470
471
            f"mask mode is {finetuning_args.badam_mask_mode}"
        )

    return optimizer


chenych's avatar
chenych committed
472
473
def _create_adam_mini_optimizer(
    model: "PreTrainedModel",
luopl's avatar
luopl committed
474
    training_args: "TrainingArguments",
chenych's avatar
chenych committed
475
) -> "torch.optim.Optimizer":
luopl's avatar
luopl committed
476
    from adam_mini import Adam_mini  # type: ignore
chenych's avatar
chenych committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

    hidden_size = getattr(model.config, "hidden_size", None)
    num_q_head = getattr(model.config, "num_attention_heads", None)
    num_kv_head = getattr(model.config, "num_key_value_heads", None)

    optimizer = Adam_mini(
        named_parameters=model.named_parameters(),
        lr=training_args.learning_rate,
        betas=(training_args.adam_beta1, training_args.adam_beta2),
        eps=training_args.adam_epsilon,
        weight_decay=training_args.weight_decay,
        model_sharding=is_fsdp_enabled() or is_deepspeed_zero3_enabled(),
        dim=hidden_size,
        n_heads=num_q_head,
        n_kv_heads=num_kv_head,
    )
luopl's avatar
luopl committed
493
    logger.info_rank0("Using Adam-mini optimizer.")
chenych's avatar
chenych committed
494
495
496
497
    return optimizer


def create_custom_optimizer(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
498
    model: "PreTrainedModel",
luopl's avatar
luopl committed
499
    training_args: "TrainingArguments",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
500
501
502
503
504
    finetuning_args: "FinetuningArguments",
) -> Optional["torch.optim.Optimizer"]:
    if finetuning_args.use_galore:
        return _create_galore_optimizer(model, training_args, finetuning_args)

luopl's avatar
luopl committed
505
506
507
    if finetuning_args.use_apollo:
        return _create_apollo_optimizer(model, training_args, finetuning_args)

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
508
509
510
511
512
513
    if finetuning_args.loraplus_lr_ratio is not None:
        return _create_loraplus_optimizer(model, training_args, finetuning_args)

    if finetuning_args.use_badam:
        return _create_badam_optimizer(model, training_args, finetuning_args)

chenych's avatar
chenych committed
514
515
516
    if finetuning_args.use_adam_mini:
        return _create_adam_mini_optimizer(model, training_args)

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
517
518

def create_custom_scheduler(
luopl's avatar
luopl committed
519
    training_args: "TrainingArguments",
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
520
521
522
523
524
525
526
527
528
529
530
531
532
    num_training_steps: int,
    optimizer: Optional["torch.optim.Optimizer"] = None,
) -> None:
    if optimizer is not None and isinstance(optimizer, DummyOptimizer):
        optimizer_dict = optimizer.optimizer_dict
        scheduler_dict: Dict["torch.nn.Parameter", "torch.optim.lr_scheduler.LRScheduler"] = {}

        for param in optimizer_dict.keys():
            scheduler_dict[param] = get_scheduler(
                training_args.lr_scheduler_type,
                optimizer=optimizer_dict[param],
                num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
                num_training_steps=num_training_steps,
chenych's avatar
chenych committed
533
                scheduler_specific_kwargs=training_args.lr_scheduler_kwargs,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
534
535
536
537
538
539
540
            )

        def scheduler_hook(param: "torch.nn.Parameter"):
            scheduler_dict[param].step()

        for param in optimizer_dict.keys():
            param.register_post_accumulate_grad_hook(scheduler_hook)
chenych's avatar
chenych committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561


def get_batch_logps(
    logits: "torch.Tensor", labels: "torch.Tensor", label_pad_token_id: int = IGNORE_INDEX
) -> Tuple["torch.Tensor", "torch.Tensor"]:
    r"""
    Computes the log probabilities of the given labels under the given logits.

    Returns:
        logps: A tensor of shape (batch_size,) containing the sum of log probabilities.
        valid_length: A tensor of shape (batch_size,) containing the number of non-masked tokens.
    """
    if logits.shape[:-1] != labels.shape:
        raise ValueError("Logits (batchsize x seqlen) and labels must have the same shape.")

    labels = labels[:, 1:].clone()
    logits = logits[:, :-1, :]
    loss_mask = labels != label_pad_token_id
    labels[labels == label_pad_token_id] = 0  # dummy token
    per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)
    return (per_token_logps * loss_mask).sum(-1), loss_mask.sum(-1)
luopl's avatar
luopl committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627


def nested_detach(
    tensors: Union["torch.Tensor", List["torch.Tensor"], Tuple["torch.Tensor"], Dict[str, "torch.Tensor"]],
    clone: bool = False,
):
    r"""
    Detach `tensors` (even if it's a nested list/tuple/dict of tensors).
    """
    if isinstance(tensors, (list, tuple)):
        return type(tensors)(nested_detach(t, clone=clone) for t in tensors)
    elif isinstance(tensors, Mapping):
        return type(tensors)({k: nested_detach(t, clone=clone) for k, t in tensors.items()})

    if isinstance(tensors, torch.Tensor):
        if clone:
            return tensors.detach().clone()
        else:
            return tensors.detach()
    else:
        return tensors


def get_swanlab_callback(finetuning_args: "FinetuningArguments") -> "TrainerCallback":
    r"""
    Gets the callback for logging to SwanLab.
    """
    import swanlab  # type: ignore
    from swanlab.integration.transformers import SwanLabCallback  # type: ignore

    if finetuning_args.swanlab_api_key is not None:
        swanlab.login(api_key=finetuning_args.swanlab_api_key)

    swanlab_callback = SwanLabCallback(
        project=finetuning_args.swanlab_project,
        workspace=finetuning_args.swanlab_workspace,
        experiment_name=finetuning_args.swanlab_run_name,
        mode=finetuning_args.swanlab_mode,
        config={"Framework": "🦙LlamaFactory"},
    )
    return swanlab_callback


def get_ray_trainer(
    training_function: Callable,
    train_loop_config: Dict[str, Any],
    ray_args: "RayArguments",
) -> "TorchTrainer":
    if not ray_args.use_ray:
        raise ValueError("Ray was not enabled. Please set `USE_RAY=1` to enable ray.")

    trainer = TorchTrainer(
        training_function,
        train_loop_config=train_loop_config,
        scaling_config=ScalingConfig(
            num_workers=ray_args.ray_num_workers,
            resources_per_worker=ray_args.resources_per_worker,
            placement_strategy=ray_args.placement_strategy,
            use_gpu=True,
        ),
        run_config=RunConfig(
            name=ray_args.ray_run_name,
            storage_path=Path("./saves").absolute().as_posix(),
        ),
    )
    return trainer