model_args.py 16.2 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
18
import json
luopl's avatar
luopl committed
19
from dataclasses import asdict, dataclass, field, fields
chenych's avatar
chenych committed
20
from typing import Any, Literal, Optional, Union
chenych's avatar
chenych committed
21

luopl's avatar
luopl committed
22
import torch
luopl's avatar
luopl committed
23
from transformers.training_args import _convert_str_dict
chenych's avatar
chenych committed
24
25
from typing_extensions import Self

chenych's avatar
chenych committed
26
from ..extras.constants import AttentionFunction, EngineName, QuantizationMethod, RopeScaling
chenych's avatar
chenych committed
27
28
29
30


@dataclass
class BaseModelArguments:
chenych's avatar
chenych committed
31
    r"""Arguments pertaining to the model."""
chenych's avatar
chenych committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
        },
    )
    adapter_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "Path to the adapter weight or identifier from huggingface.co/models. "
                "Use commas to separate multiple adapters."
            )
        },
    )
    adapter_folder: Optional[str] = field(
        default=None,
        metadata={"help": "The folder containing the adapter weights to load."},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
    )
    resize_vocab: bool = field(
        default=False,
        metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
    )
    split_special_tokens: bool = field(
        default=False,
        metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
    )
chenych's avatar
chenych committed
68
69
70
71
72
73
74
    add_tokens: Optional[str] = field(
        default=None,
        metadata={
            "help": "Non-special tokens to be added into the tokenizer. Use commas to separate multiple tokens."
        },
    )
    add_special_tokens: Optional[str] = field(
chenych's avatar
chenych committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        default=None,
        metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    low_cpu_mem_usage: bool = field(
        default=True,
        metadata={"help": "Whether or not to use memory-efficient model loading."},
    )
    rope_scaling: Optional[RopeScaling] = field(
        default=None,
        metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
    )
    flash_attn: AttentionFunction = field(
        default=AttentionFunction.AUTO,
        metadata={"help": "Enable FlashAttention for faster training and inference."},
    )
    shift_attn: bool = field(
        default=False,
        metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
    )
    mixture_of_depths: Optional[Literal["convert", "load"]] = field(
        default=None,
        metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
    )
    use_unsloth: bool = field(
        default=False,
        metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
    )
    use_unsloth_gc: bool = field(
        default=False,
        metadata={"help": "Whether or not to use unsloth's gradient checkpointing (no need to install unsloth)."},
    )
    enable_liger_kernel: bool = field(
        default=False,
        metadata={"help": "Whether or not to enable liger kernel for faster training."},
    )
    moe_aux_loss_coef: Optional[float] = field(
        default=None,
        metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
    )
    disable_gradient_checkpointing: bool = field(
        default=False,
        metadata={"help": "Whether or not to disable gradient checkpointing."},
    )
    use_reentrant_gc: bool = field(
        default=True,
        metadata={"help": "Whether or not to use reentrant gradient checkpointing."},
    )
    upcast_layernorm: bool = field(
        default=False,
        metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
    )
    upcast_lmhead_output: bool = field(
        default=False,
        metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
    )
    train_from_scratch: bool = field(
        default=False,
        metadata={"help": "Whether or not to randomly initialize the model weights."},
    )
    infer_backend: EngineName = field(
        default=EngineName.HF,
        metadata={"help": "Backend engine used at inference."},
    )
    offload_folder: str = field(
        default="offload",
        metadata={"help": "Path to offload model weights."},
    )
    use_cache: bool = field(
        default=True,
        metadata={"help": "Whether or not to use KV cache in generation."},
    )
    infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
        default="auto",
        metadata={"help": "Data type for model weights and activations at inference."},
    )
    hf_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with Hugging Face Hub."},
    )
    ms_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with ModelScope Hub."},
    )
    om_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with Modelers Hub."},
    )
    print_param_status: bool = field(
        default=False,
        metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={"help": "Whether to trust the execution of code from datasets/models defined on the Hub or not."},
    )

    def __post_init__(self):
        if self.model_name_or_path is None:
            raise ValueError("Please provide `model_name_or_path`.")

        if self.split_special_tokens and self.use_fast_tokenizer:
            raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")

        if self.adapter_name_or_path is not None:  # support merging multiple lora weights
            self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]

chenych's avatar
chenych committed
185
186
187
188
189
        if self.add_tokens is not None:  # support multiple tokens
            self.add_tokens = [token.strip() for token in self.add_tokens.split(",")]

        if self.add_special_tokens is not None:  # support multiple special tokens
            self.add_special_tokens = [token.strip() for token in self.add_special_tokens.split(",")]
chenych's avatar
chenych committed
190

chenych's avatar
chenych committed
191

luopl's avatar
luopl committed
192
193
@dataclass
class QuantizationArguments:
chenych's avatar
chenych committed
194
    r"""Arguments pertaining to the quantization method."""
luopl's avatar
luopl committed
195

chenych's avatar
chenych committed
196
197
    quantization_method: QuantizationMethod = field(
        default=QuantizationMethod.BNB,
luopl's avatar
luopl committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        metadata={"help": "Quantization method to use for on-the-fly quantization."},
    )
    quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the model using on-the-fly quantization."},
    )
    quantization_type: Literal["fp4", "nf4"] = field(
        default="nf4",
        metadata={"help": "Quantization data type to use in bitsandbytes int4 training."},
    )
    double_quantization: bool = field(
        default=True,
        metadata={"help": "Whether or not to use double quantization in bitsandbytes int4 training."},
    )
    quantization_device_map: Optional[Literal["auto"]] = field(
        default=None,
        metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."},
    )


@dataclass
class ProcessorArguments:
chenych's avatar
chenych committed
220
    r"""Arguments pertaining to the image processor."""
luopl's avatar
luopl committed
221

chenych's avatar
chenych committed
222
223
224
    image_max_pixels: int = field(
        default=768 * 768,
        metadata={"help": "The maximum number of pixels of image inputs."},
luopl's avatar
luopl committed
225
    )
chenych's avatar
chenych committed
226
227
228
229
    image_min_pixels: int = field(
        default=32 * 32,
        metadata={"help": "The minimum number of pixels of image inputs."},
    )
chenych's avatar
chenych committed
230
231
232
233
    image_do_pan_and_scan: bool = field(
        default=False,
        metadata={"help": "Use pan and scan to process image for gemma3."},
    )
chenych's avatar
chenych committed
234
235
236
237
    crop_to_patches: bool = field(
        default=False,
        metadata={"help": "Whether to crop the image to patches for internvl."},
    )
chenych's avatar
chenych committed
238
239
240
241
242
243
244
    video_max_pixels: int = field(
        default=256 * 256,
        metadata={"help": "The maximum number of pixels of video inputs."},
    )
    video_min_pixels: int = field(
        default=16 * 16,
        metadata={"help": "The minimum number of pixels of video inputs."},
luopl's avatar
luopl committed
245
246
247
248
249
250
    )
    video_fps: float = field(
        default=2.0,
        metadata={"help": "The frames to sample per second for video inputs."},
    )
    video_maxlen: int = field(
chenych's avatar
chenych committed
251
        default=128,
luopl's avatar
luopl committed
252
253
        metadata={"help": "The maximum number of sampled frames for video inputs."},
    )
mashun1's avatar
mashun1 committed
254
255
256
257
    use_audio_in_video: bool = field(
        default=False,
        metadata={"help": "Whether or not to use audio in video inputs."},
    )
chenych's avatar
chenych committed
258
259
260
261
262
263
264
265
266
267
268
    audio_sampling_rate: int = field(
        default=16000,
        metadata={"help": "The sampling rate of audio inputs."},
    )

    def __post_init__(self):
        if self.image_max_pixels < self.image_min_pixels:
            raise ValueError("`image_max_pixels` cannot be smaller than `image_min_pixels`.")

        if self.video_max_pixels < self.video_min_pixels:
            raise ValueError("`video_max_pixels` cannot be smaller than `video_min_pixels`.")
luopl's avatar
luopl committed
269
270
271
272


@dataclass
class ExportArguments:
chenych's avatar
chenych committed
273
    r"""Arguments pertaining to the model export."""
luopl's avatar
luopl committed
274
275
276
277
278
279

    export_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the directory to save the exported model."},
    )
    export_size: int = field(
chenych's avatar
chenych committed
280
        default=5,
luopl's avatar
luopl committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        metadata={"help": "The file shard size (in GB) of the exported model."},
    )
    export_device: Literal["cpu", "auto"] = field(
        default="cpu",
        metadata={"help": "The device used in model export, use `auto` to accelerate exporting."},
    )
    export_quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the exported model."},
    )
    export_quantization_dataset: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
    )
    export_quantization_nsamples: int = field(
        default=128,
        metadata={"help": "The number of samples used for quantization."},
    )
    export_quantization_maxlen: int = field(
        default=1024,
        metadata={"help": "The maximum length of the model inputs used for quantization."},
    )
    export_legacy_format: bool = field(
        default=False,
        metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
    )
    export_hub_model_id: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
    )

chenych's avatar
chenych committed
312
313
314
315
    def __post_init__(self):
        if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
            raise ValueError("Quantization dataset is necessary for exporting.")

luopl's avatar
luopl committed
316
317
318

@dataclass
class VllmArguments:
chenych's avatar
chenych committed
319
    r"""Arguments pertaining to the vLLM worker."""
luopl's avatar
luopl committed
320
321

    vllm_maxlen: int = field(
luopl's avatar
luopl committed
322
        default=4096,
luopl's avatar
luopl committed
323
324
325
        metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."},
    )
    vllm_gpu_util: float = field(
chenych's avatar
chenych committed
326
        default=0.7,
luopl's avatar
luopl committed
327
328
329
330
331
332
333
334
335
336
        metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."},
    )
    vllm_enforce_eager: bool = field(
        default=False,
        metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."},
    )
    vllm_max_lora_rank: int = field(
        default=32,
        metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
    )
luopl's avatar
luopl committed
337
338
339
340
    vllm_config: Optional[Union[dict, str]] = field(
        default=None,
        metadata={"help": "Config to initialize the vllm engine. Please use JSON strings."},
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
341

chenych's avatar
chenych committed
342
343
344
345
    def __post_init__(self):
        if isinstance(self.vllm_config, str) and self.vllm_config.startswith("{"):
            self.vllm_config = _convert_str_dict(json.loads(self.vllm_config))

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
346
347

@dataclass
chenych's avatar
chenych committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
class SGLangArguments:
    r"""Arguments pertaining to the SGLang worker."""

    sglang_maxlen: int = field(
        default=4096,
        metadata={"help": "Maximum sequence (prompt + response) length of the SGLang engine."},
    )
    sglang_mem_fraction: float = field(
        default=0.7,
        metadata={"help": "The memory fraction (0-1) to be used for the SGLang engine."},
    )
    sglang_tp_size: int = field(
        default=-1,
        metadata={"help": "Tensor parallel size for the SGLang engine."},
    )
    sglang_config: Optional[Union[dict, str]] = field(
        default=None,
        metadata={"help": "Config to initialize the SGLang engine. Please use JSON strings."},
    )
mashun1's avatar
mashun1 committed
367
368
369
370
371
372
    sglang_lora_backend: Literal["triton", "flashinfer"] = field(
        default="triton",
        metadata={
            "help": "The backend of running GEMM kernels for Lora modules. Recommend using the Triton LoRA backend for better performance and stability."
        },
    )
chenych's avatar
chenych committed
373
374
375
376
377
378
379
380
381
382
383

    def __post_init__(self):
        if isinstance(self.sglang_config, str) and self.sglang_config.startswith("{"):
            self.sglang_config = _convert_str_dict(json.loads(self.sglang_config))


@dataclass
class ModelArguments(
    SGLangArguments, VllmArguments, ExportArguments, ProcessorArguments, QuantizationArguments, BaseModelArguments
):
    r"""Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
chenych's avatar
chenych committed
384
385

    The class on the most right will be displayed first.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
386
387
    """

luopl's avatar
luopl committed
388
    compute_dtype: Optional[torch.dtype] = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
389
        default=None,
luopl's avatar
luopl committed
390
391
        init=False,
        metadata={"help": "Torch data type for computing model outputs, derived from `fp/bf16`. Do not specify it."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
392
    )
chenych's avatar
chenych committed
393
    device_map: Optional[Union[str, dict[str, Any]]] = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
394
        default=None,
luopl's avatar
luopl committed
395
396
        init=False,
        metadata={"help": "Device map for model placement, derived from training stage. Do not specify it."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
397
    )
luopl's avatar
luopl committed
398
    model_max_length: Optional[int] = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
399
        default=None,
luopl's avatar
luopl committed
400
401
        init=False,
        metadata={"help": "The maximum input length for model, derived from `cutoff_len`. Do not specify it."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
402
    )
luopl's avatar
luopl committed
403
    block_diag_attn: bool = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
404
        default=False,
luopl's avatar
luopl committed
405
406
        init=False,
        metadata={"help": "Whether use block diag attention or not, derived from `neat_packing`. Do not specify it."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
407
408
409
    )

    def __post_init__(self):
chenych's avatar
chenych committed
410
        BaseModelArguments.__post_init__(self)
chenych's avatar
chenych committed
411
        ProcessorArguments.__post_init__(self)
chenych's avatar
chenych committed
412
413
        ExportArguments.__post_init__(self)
        VllmArguments.__post_init__(self)
chenych's avatar
chenych committed
414
        SGLangArguments.__post_init__(self)
luopl's avatar
luopl committed
415

chenych's avatar
chenych committed
416
    @classmethod
luopl's avatar
luopl committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    def copyfrom(cls, source: "Self", **kwargs) -> "Self":
        init_args, lazy_args = {}, {}
        for attr in fields(source):
            if attr.init:
                init_args[attr.name] = getattr(source, attr.name)
            else:
                lazy_args[attr.name] = getattr(source, attr.name)

        init_args.update(kwargs)
        result = cls(**init_args)
        for name, value in lazy_args.items():
            setattr(result, name, value)

        return result
luopl's avatar
luopl committed
431

chenych's avatar
chenych committed
432
    def to_dict(self) -> dict[str, Any]:
luopl's avatar
luopl committed
433
434
435
        args = asdict(self)
        args = {k: f"<{k.upper()}>" if k.endswith("token") else v for k, v in args.items()}
        return args