model_args.py 13.8 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
18
import json
luopl's avatar
luopl committed
19
from dataclasses import asdict, dataclass, field, fields
luopl's avatar
luopl committed
20
from typing import Any, Dict, Literal, Optional, Union
chenych's avatar
chenych committed
21

luopl's avatar
luopl committed
22
import torch
luopl's avatar
luopl committed
23
from transformers.training_args import _convert_str_dict
chenych's avatar
chenych committed
24
25
from typing_extensions import Self

chenych's avatar
chenych committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from ..extras.constants import AttentionFunction, EngineName, RopeScaling


@dataclass
class BaseModelArguments:
    r"""
    Arguments pertaining to the model.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
        },
    )
    adapter_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "Path to the adapter weight or identifier from huggingface.co/models. "
                "Use commas to separate multiple adapters."
            )
        },
    )
    adapter_folder: Optional[str] = field(
        default=None,
        metadata={"help": "The folder containing the adapter weights to load."},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
    )
    resize_vocab: bool = field(
        default=False,
        metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
    )
    split_special_tokens: bool = field(
        default=False,
        metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
    )
    new_special_tokens: Optional[str] = field(
        default=None,
        metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    low_cpu_mem_usage: bool = field(
        default=True,
        metadata={"help": "Whether or not to use memory-efficient model loading."},
    )
    rope_scaling: Optional[RopeScaling] = field(
        default=None,
        metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
    )
    flash_attn: AttentionFunction = field(
        default=AttentionFunction.AUTO,
        metadata={"help": "Enable FlashAttention for faster training and inference."},
    )
    shift_attn: bool = field(
        default=False,
        metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
    )
    mixture_of_depths: Optional[Literal["convert", "load"]] = field(
        default=None,
        metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
    )
    use_unsloth: bool = field(
        default=False,
        metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
    )
    use_unsloth_gc: bool = field(
        default=False,
        metadata={"help": "Whether or not to use unsloth's gradient checkpointing (no need to install unsloth)."},
    )
    enable_liger_kernel: bool = field(
        default=False,
        metadata={"help": "Whether or not to enable liger kernel for faster training."},
    )
    moe_aux_loss_coef: Optional[float] = field(
        default=None,
        metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
    )
    disable_gradient_checkpointing: bool = field(
        default=False,
        metadata={"help": "Whether or not to disable gradient checkpointing."},
    )
    use_reentrant_gc: bool = field(
        default=True,
        metadata={"help": "Whether or not to use reentrant gradient checkpointing."},
    )
    upcast_layernorm: bool = field(
        default=False,
        metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
    )
    upcast_lmhead_output: bool = field(
        default=False,
        metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
    )
    train_from_scratch: bool = field(
        default=False,
        metadata={"help": "Whether or not to randomly initialize the model weights."},
    )
    infer_backend: EngineName = field(
        default=EngineName.HF,
        metadata={"help": "Backend engine used at inference."},
    )
    offload_folder: str = field(
        default="offload",
        metadata={"help": "Path to offload model weights."},
    )
    use_cache: bool = field(
        default=True,
        metadata={"help": "Whether or not to use KV cache in generation."},
    )
    infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
        default="auto",
        metadata={"help": "Data type for model weights and activations at inference."},
    )
    hf_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with Hugging Face Hub."},
    )
    ms_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with ModelScope Hub."},
    )
    om_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with Modelers Hub."},
    )
    print_param_status: bool = field(
        default=False,
        metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={"help": "Whether to trust the execution of code from datasets/models defined on the Hub or not."},
    )

    def __post_init__(self):
        if self.model_name_or_path is None:
            raise ValueError("Please provide `model_name_or_path`.")

        if self.split_special_tokens and self.use_fast_tokenizer:
            raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")

        if self.adapter_name_or_path is not None:  # support merging multiple lora weights
            self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]

        if self.new_special_tokens is not None:  # support multiple special tokens
            self.new_special_tokens = [token.strip() for token in self.new_special_tokens.split(",")]

chenych's avatar
chenych committed
184

luopl's avatar
luopl committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
@dataclass
class QuantizationArguments:
    r"""
    Arguments pertaining to the quantization method.
    """

    quantization_method: Literal["bitsandbytes", "hqq", "eetq"] = field(
        default="bitsandbytes",
        metadata={"help": "Quantization method to use for on-the-fly quantization."},
    )
    quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the model using on-the-fly quantization."},
    )
    quantization_type: Literal["fp4", "nf4"] = field(
        default="nf4",
        metadata={"help": "Quantization data type to use in bitsandbytes int4 training."},
    )
    double_quantization: bool = field(
        default=True,
        metadata={"help": "Whether or not to use double quantization in bitsandbytes int4 training."},
    )
    quantization_device_map: Optional[Literal["auto"]] = field(
        default=None,
        metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."},
    )


@dataclass
class ProcessorArguments:
    r"""
    Arguments pertaining to the image processor.
    """

chenych's avatar
chenych committed
219
220
221
    image_max_pixels: int = field(
        default=768 * 768,
        metadata={"help": "The maximum number of pixels of image inputs."},
luopl's avatar
luopl committed
222
    )
chenych's avatar
chenych committed
223
224
225
226
227
228
229
230
231
232
233
    image_min_pixels: int = field(
        default=32 * 32,
        metadata={"help": "The minimum number of pixels of image inputs."},
    )
    video_max_pixels: int = field(
        default=256 * 256,
        metadata={"help": "The maximum number of pixels of video inputs."},
    )
    video_min_pixels: int = field(
        default=16 * 16,
        metadata={"help": "The minimum number of pixels of video inputs."},
luopl's avatar
luopl committed
234
235
236
237
238
239
    )
    video_fps: float = field(
        default=2.0,
        metadata={"help": "The frames to sample per second for video inputs."},
    )
    video_maxlen: int = field(
chenych's avatar
chenych committed
240
        default=128,
luopl's avatar
luopl committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        metadata={"help": "The maximum number of sampled frames for video inputs."},
    )


@dataclass
class ExportArguments:
    r"""
    Arguments pertaining to the model export.
    """

    export_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the directory to save the exported model."},
    )
    export_size: int = field(
chenych's avatar
chenych committed
256
        default=5,
luopl's avatar
luopl committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        metadata={"help": "The file shard size (in GB) of the exported model."},
    )
    export_device: Literal["cpu", "auto"] = field(
        default="cpu",
        metadata={"help": "The device used in model export, use `auto` to accelerate exporting."},
    )
    export_quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the exported model."},
    )
    export_quantization_dataset: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
    )
    export_quantization_nsamples: int = field(
        default=128,
        metadata={"help": "The number of samples used for quantization."},
    )
    export_quantization_maxlen: int = field(
        default=1024,
        metadata={"help": "The maximum length of the model inputs used for quantization."},
    )
    export_legacy_format: bool = field(
        default=False,
        metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
    )
    export_hub_model_id: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
    )

chenych's avatar
chenych committed
288
289
290
291
    def __post_init__(self):
        if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
            raise ValueError("Quantization dataset is necessary for exporting.")

luopl's avatar
luopl committed
292
293
294
295
296
297
298
299

@dataclass
class VllmArguments:
    r"""
    Arguments pertaining to the vLLM worker.
    """

    vllm_maxlen: int = field(
luopl's avatar
luopl committed
300
        default=4096,
luopl's avatar
luopl committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."},
    )
    vllm_gpu_util: float = field(
        default=0.9,
        metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."},
    )
    vllm_enforce_eager: bool = field(
        default=False,
        metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."},
    )
    vllm_max_lora_rank: int = field(
        default=32,
        metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
    )
luopl's avatar
luopl committed
315
316
317
318
    vllm_config: Optional[Union[dict, str]] = field(
        default=None,
        metadata={"help": "Config to initialize the vllm engine. Please use JSON strings."},
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
319

chenych's avatar
chenych committed
320
321
322
323
    def __post_init__(self):
        if isinstance(self.vllm_config, str) and self.vllm_config.startswith("{"):
            self.vllm_config = _convert_str_dict(json.loads(self.vllm_config))

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
324
325

@dataclass
chenych's avatar
chenych committed
326
class ModelArguments(VllmArguments, ExportArguments, ProcessorArguments, QuantizationArguments, BaseModelArguments):
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
327
328
    r"""
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
chenych's avatar
chenych committed
329
330

    The class on the most right will be displayed first.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
331
332
    """

luopl's avatar
luopl committed
333
    compute_dtype: Optional[torch.dtype] = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
334
        default=None,
luopl's avatar
luopl committed
335
336
        init=False,
        metadata={"help": "Torch data type for computing model outputs, derived from `fp/bf16`. Do not specify it."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
337
    )
luopl's avatar
luopl committed
338
    device_map: Optional[Union[str, Dict[str, Any]]] = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
339
        default=None,
luopl's avatar
luopl committed
340
341
        init=False,
        metadata={"help": "Device map for model placement, derived from training stage. Do not specify it."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
342
    )
luopl's avatar
luopl committed
343
    model_max_length: Optional[int] = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
344
        default=None,
luopl's avatar
luopl committed
345
346
        init=False,
        metadata={"help": "The maximum input length for model, derived from `cutoff_len`. Do not specify it."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
347
    )
luopl's avatar
luopl committed
348
    block_diag_attn: bool = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
349
        default=False,
luopl's avatar
luopl committed
350
351
        init=False,
        metadata={"help": "Whether use block diag attention or not, derived from `neat_packing`. Do not specify it."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
352
353
354
    )

    def __post_init__(self):
chenych's avatar
chenych committed
355
356
357
        BaseModelArguments.__post_init__(self)
        ExportArguments.__post_init__(self)
        VllmArguments.__post_init__(self)
luopl's avatar
luopl committed
358

chenych's avatar
chenych committed
359
    @classmethod
luopl's avatar
luopl committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    def copyfrom(cls, source: "Self", **kwargs) -> "Self":
        init_args, lazy_args = {}, {}
        for attr in fields(source):
            if attr.init:
                init_args[attr.name] = getattr(source, attr.name)
            else:
                lazy_args[attr.name] = getattr(source, attr.name)

        init_args.update(kwargs)
        result = cls(**init_args)
        for name, value in lazy_args.items():
            setattr(result, name, value)

        return result
luopl's avatar
luopl committed
374
375
376
377
378

    def to_dict(self) -> Dict[str, Any]:
        args = asdict(self)
        args = {k: f"<{k.upper()}>" if k.endswith("token") else v for k, v in args.items()}
        return args