model_args.py 15.4 KB
Newer Older
chenych's avatar
chenych committed
1
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
chenych's avatar
chenych committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

luopl's avatar
luopl committed
18
import json
luopl's avatar
luopl committed
19
from dataclasses import asdict, dataclass, field, fields
chenych's avatar
chenych committed
20
from typing import Any, Literal, Optional, Union
chenych's avatar
chenych committed
21

luopl's avatar
luopl committed
22
import torch
luopl's avatar
luopl committed
23
from transformers.training_args import _convert_str_dict
chenych's avatar
chenych committed
24
25
from typing_extensions import Self

chenych's avatar
chenych committed
26
from ..extras.constants import AttentionFunction, EngineName, QuantizationMethod, RopeScaling
chenych's avatar
chenych committed
27
28
29
30


@dataclass
class BaseModelArguments:
chenych's avatar
chenych committed
31
    r"""Arguments pertaining to the model."""
chenych's avatar
chenych committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
        },
    )
    adapter_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "Path to the adapter weight or identifier from huggingface.co/models. "
                "Use commas to separate multiple adapters."
            )
        },
    )
    adapter_folder: Optional[str] = field(
        default=None,
        metadata={"help": "The folder containing the adapter weights to load."},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
    )
    resize_vocab: bool = field(
        default=False,
        metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
    )
    split_special_tokens: bool = field(
        default=False,
        metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
    )
    new_special_tokens: Optional[str] = field(
        default=None,
        metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    low_cpu_mem_usage: bool = field(
        default=True,
        metadata={"help": "Whether or not to use memory-efficient model loading."},
    )
    rope_scaling: Optional[RopeScaling] = field(
        default=None,
        metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
    )
    flash_attn: AttentionFunction = field(
        default=AttentionFunction.AUTO,
        metadata={"help": "Enable FlashAttention for faster training and inference."},
    )
    shift_attn: bool = field(
        default=False,
        metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
    )
    mixture_of_depths: Optional[Literal["convert", "load"]] = field(
        default=None,
        metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
    )
    use_unsloth: bool = field(
        default=False,
        metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
    )
    use_unsloth_gc: bool = field(
        default=False,
        metadata={"help": "Whether or not to use unsloth's gradient checkpointing (no need to install unsloth)."},
    )
    enable_liger_kernel: bool = field(
        default=False,
        metadata={"help": "Whether or not to enable liger kernel for faster training."},
    )
    moe_aux_loss_coef: Optional[float] = field(
        default=None,
        metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
    )
    disable_gradient_checkpointing: bool = field(
        default=False,
        metadata={"help": "Whether or not to disable gradient checkpointing."},
    )
    use_reentrant_gc: bool = field(
        default=True,
        metadata={"help": "Whether or not to use reentrant gradient checkpointing."},
    )
    upcast_layernorm: bool = field(
        default=False,
        metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
    )
    upcast_lmhead_output: bool = field(
        default=False,
        metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
    )
    train_from_scratch: bool = field(
        default=False,
        metadata={"help": "Whether or not to randomly initialize the model weights."},
    )
    infer_backend: EngineName = field(
        default=EngineName.HF,
        metadata={"help": "Backend engine used at inference."},
    )
    offload_folder: str = field(
        default="offload",
        metadata={"help": "Path to offload model weights."},
    )
    use_cache: bool = field(
        default=True,
        metadata={"help": "Whether or not to use KV cache in generation."},
    )
    infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
        default="auto",
        metadata={"help": "Data type for model weights and activations at inference."},
    )
    hf_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with Hugging Face Hub."},
    )
    ms_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with ModelScope Hub."},
    )
    om_hub_token: Optional[str] = field(
        default=None,
        metadata={"help": "Auth token to log in with Modelers Hub."},
    )
    print_param_status: bool = field(
        default=False,
        metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={"help": "Whether to trust the execution of code from datasets/models defined on the Hub or not."},
    )

    def __post_init__(self):
        if self.model_name_or_path is None:
            raise ValueError("Please provide `model_name_or_path`.")

        if self.split_special_tokens and self.use_fast_tokenizer:
            raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")

        if self.adapter_name_or_path is not None:  # support merging multiple lora weights
            self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]

        if self.new_special_tokens is not None:  # support multiple special tokens
            self.new_special_tokens = [token.strip() for token in self.new_special_tokens.split(",")]

chenych's avatar
chenych committed
182

luopl's avatar
luopl committed
183
184
@dataclass
class QuantizationArguments:
chenych's avatar
chenych committed
185
    r"""Arguments pertaining to the quantization method."""
luopl's avatar
luopl committed
186

chenych's avatar
chenych committed
187
188
    quantization_method: QuantizationMethod = field(
        default=QuantizationMethod.BNB,
luopl's avatar
luopl committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        metadata={"help": "Quantization method to use for on-the-fly quantization."},
    )
    quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the model using on-the-fly quantization."},
    )
    quantization_type: Literal["fp4", "nf4"] = field(
        default="nf4",
        metadata={"help": "Quantization data type to use in bitsandbytes int4 training."},
    )
    double_quantization: bool = field(
        default=True,
        metadata={"help": "Whether or not to use double quantization in bitsandbytes int4 training."},
    )
    quantization_device_map: Optional[Literal["auto"]] = field(
        default=None,
        metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."},
    )


@dataclass
class ProcessorArguments:
chenych's avatar
chenych committed
211
    r"""Arguments pertaining to the image processor."""
luopl's avatar
luopl committed
212

chenych's avatar
chenych committed
213
214
215
    image_max_pixels: int = field(
        default=768 * 768,
        metadata={"help": "The maximum number of pixels of image inputs."},
luopl's avatar
luopl committed
216
    )
chenych's avatar
chenych committed
217
218
219
220
    image_min_pixels: int = field(
        default=32 * 32,
        metadata={"help": "The minimum number of pixels of image inputs."},
    )
chenych's avatar
chenych committed
221
222
223
224
225
226
227
228
    image_do_pan_and_scan: bool = field(
        default=False,
        metadata={"help": "Use pan and scan to process image for gemma3."},
    )
    use_audio_in_video: bool = field(
        default=False,
        metadata={"help": "Whether or not to use audio in video inputs."},
    )
chenych's avatar
chenych committed
229
230
231
232
233
234
235
    video_max_pixels: int = field(
        default=256 * 256,
        metadata={"help": "The maximum number of pixels of video inputs."},
    )
    video_min_pixels: int = field(
        default=16 * 16,
        metadata={"help": "The minimum number of pixels of video inputs."},
luopl's avatar
luopl committed
236
237
238
239
240
241
    )
    video_fps: float = field(
        default=2.0,
        metadata={"help": "The frames to sample per second for video inputs."},
    )
    video_maxlen: int = field(
chenych's avatar
chenych committed
242
        default=128,
luopl's avatar
luopl committed
243
244
        metadata={"help": "The maximum number of sampled frames for video inputs."},
    )
chenych's avatar
chenych committed
245
246
247
248
249
250
251
252
253
254
255
    audio_sampling_rate: int = field(
        default=16000,
        metadata={"help": "The sampling rate of audio inputs."},
    )

    def __post_init__(self):
        if self.image_max_pixels < self.image_min_pixels:
            raise ValueError("`image_max_pixels` cannot be smaller than `image_min_pixels`.")

        if self.video_max_pixels < self.video_min_pixels:
            raise ValueError("`video_max_pixels` cannot be smaller than `video_min_pixels`.")
luopl's avatar
luopl committed
256
257
258
259


@dataclass
class ExportArguments:
chenych's avatar
chenych committed
260
    r"""Arguments pertaining to the model export."""
luopl's avatar
luopl committed
261
262
263
264
265
266

    export_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the directory to save the exported model."},
    )
    export_size: int = field(
chenych's avatar
chenych committed
267
        default=5,
luopl's avatar
luopl committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        metadata={"help": "The file shard size (in GB) of the exported model."},
    )
    export_device: Literal["cpu", "auto"] = field(
        default="cpu",
        metadata={"help": "The device used in model export, use `auto` to accelerate exporting."},
    )
    export_quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the exported model."},
    )
    export_quantization_dataset: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
    )
    export_quantization_nsamples: int = field(
        default=128,
        metadata={"help": "The number of samples used for quantization."},
    )
    export_quantization_maxlen: int = field(
        default=1024,
        metadata={"help": "The maximum length of the model inputs used for quantization."},
    )
    export_legacy_format: bool = field(
        default=False,
        metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
    )
    export_hub_model_id: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
    )

chenych's avatar
chenych committed
299
300
301
302
    def __post_init__(self):
        if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
            raise ValueError("Quantization dataset is necessary for exporting.")

luopl's avatar
luopl committed
303
304
305

@dataclass
class VllmArguments:
chenych's avatar
chenych committed
306
    r"""Arguments pertaining to the vLLM worker."""
luopl's avatar
luopl committed
307
308

    vllm_maxlen: int = field(
luopl's avatar
luopl committed
309
        default=4096,
luopl's avatar
luopl committed
310
311
312
        metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."},
    )
    vllm_gpu_util: float = field(
chenych's avatar
chenych committed
313
        default=0.7,
luopl's avatar
luopl committed
314
315
316
317
318
319
320
321
322
323
        metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."},
    )
    vllm_enforce_eager: bool = field(
        default=False,
        metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."},
    )
    vllm_max_lora_rank: int = field(
        default=32,
        metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
    )
luopl's avatar
luopl committed
324
325
326
327
    vllm_config: Optional[Union[dict, str]] = field(
        default=None,
        metadata={"help": "Config to initialize the vllm engine. Please use JSON strings."},
    )
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
328

chenych's avatar
chenych committed
329
330
331
332
    def __post_init__(self):
        if isinstance(self.vllm_config, str) and self.vllm_config.startswith("{"):
            self.vllm_config = _convert_str_dict(json.loads(self.vllm_config))

Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
333
334

@dataclass
chenych's avatar
chenych committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
class SGLangArguments:
    r"""Arguments pertaining to the SGLang worker."""

    sglang_maxlen: int = field(
        default=4096,
        metadata={"help": "Maximum sequence (prompt + response) length of the SGLang engine."},
    )
    sglang_mem_fraction: float = field(
        default=0.7,
        metadata={"help": "The memory fraction (0-1) to be used for the SGLang engine."},
    )
    sglang_tp_size: int = field(
        default=-1,
        metadata={"help": "Tensor parallel size for the SGLang engine."},
    )
    sglang_config: Optional[Union[dict, str]] = field(
        default=None,
        metadata={"help": "Config to initialize the SGLang engine. Please use JSON strings."},
    )

    def __post_init__(self):
        if isinstance(self.sglang_config, str) and self.sglang_config.startswith("{"):
            self.sglang_config = _convert_str_dict(json.loads(self.sglang_config))


@dataclass
class ModelArguments(
    SGLangArguments, VllmArguments, ExportArguments, ProcessorArguments, QuantizationArguments, BaseModelArguments
):
    r"""Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
chenych's avatar
chenych committed
365
366

    The class on the most right will be displayed first.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
367
368
    """

luopl's avatar
luopl committed
369
    compute_dtype: Optional[torch.dtype] = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
370
        default=None,
luopl's avatar
luopl committed
371
372
        init=False,
        metadata={"help": "Torch data type for computing model outputs, derived from `fp/bf16`. Do not specify it."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
373
    )
chenych's avatar
chenych committed
374
    device_map: Optional[Union[str, dict[str, Any]]] = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
375
        default=None,
luopl's avatar
luopl committed
376
377
        init=False,
        metadata={"help": "Device map for model placement, derived from training stage. Do not specify it."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
378
    )
luopl's avatar
luopl committed
379
    model_max_length: Optional[int] = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
380
        default=None,
luopl's avatar
luopl committed
381
382
        init=False,
        metadata={"help": "The maximum input length for model, derived from `cutoff_len`. Do not specify it."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
383
    )
luopl's avatar
luopl committed
384
    block_diag_attn: bool = field(
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
385
        default=False,
luopl's avatar
luopl committed
386
387
        init=False,
        metadata={"help": "Whether use block diag attention or not, derived from `neat_packing`. Do not specify it."},
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
388
389
390
    )

    def __post_init__(self):
chenych's avatar
chenych committed
391
        BaseModelArguments.__post_init__(self)
chenych's avatar
chenych committed
392
        ProcessorArguments.__post_init__(self)
chenych's avatar
chenych committed
393
394
        ExportArguments.__post_init__(self)
        VllmArguments.__post_init__(self)
chenych's avatar
chenych committed
395
        SGLangArguments.__post_init__(self)
luopl's avatar
luopl committed
396

chenych's avatar
chenych committed
397
    @classmethod
luopl's avatar
luopl committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    def copyfrom(cls, source: "Self", **kwargs) -> "Self":
        init_args, lazy_args = {}, {}
        for attr in fields(source):
            if attr.init:
                init_args[attr.name] = getattr(source, attr.name)
            else:
                lazy_args[attr.name] = getattr(source, attr.name)

        init_args.update(kwargs)
        result = cls(**init_args)
        for name, value in lazy_args.items():
            setattr(result, name, value)

        return result
luopl's avatar
luopl committed
412

chenych's avatar
chenych committed
413
    def to_dict(self) -> dict[str, Any]:
luopl's avatar
luopl committed
414
415
416
        args = asdict(self)
        args = {k: f"<{k.upper()}>" if k.endswith("token") else v for k, v in args.items()}
        return args