layers.py 8.26 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
3
r'''
Layers that FMoE provides to users
'''
Jiezhong Qiu's avatar
Jiezhong Qiu committed
4
import math
Rick Ho's avatar
Rick Ho committed
5
import torch
Rick Ho's avatar
Rick Ho committed
6
import torch.nn as nn
7
import numpy as np
Rick Ho's avatar
Rick Ho committed
8

Rick Ho's avatar
Rick Ho committed
9
10
from .functions import moe_prepare_forward
from .functions import MOEScatter, MOEGather, MOELinear
Sengxian's avatar
Sengxian committed
11
from .functions import AllGather, Slice
Rick Ho's avatar
Rick Ho committed
12
from .gates import NaiveGate
Rick Ho's avatar
Rick Ho committed
13

Rick Ho's avatar
Rick Ho committed
14
15

class FMoELinear(nn.Module):
Rick Ho's avatar
Rick Ho committed
16
17
18
19
20
21
    r'''
    A linear layer that contains multiple experts.
    As multiple experts can be placed on the same worker, the computation can be
    performed in parallel to increase the performance.
    The FMoELinear module provides such function.
    '''
22
23
    def __init__(self, num_expert: int, in_feat: int, out_feat: int,
            bias: bool = True, rank: int = 0):
Rick Ho's avatar
Rick Ho committed
24
        super().__init__()
Rick Ho's avatar
Rick Ho committed
25
26
27
        self.num_expert = num_expert
        self.in_feat = in_feat
        self.out_feat = out_feat
28
        self.rank = rank
29
        self.weight = nn.Parameter(torch.Tensor(num_expert, out_feat, in_feat))
30
31
32
33
        if bias:
            self.bias = nn.Parameter(torch.Tensor(num_expert, out_feat))
        else:
            self.register_parameter('bias', None)
Rick Ho's avatar
Rick Ho committed
34
35
36
        self.reset_parameters()

    def reset_parameters(self):
Rick Ho's avatar
Rick Ho committed
37
38
39
        r'''
        Initialize the weight as linear layers
        '''
40
        rng = np.random.default_rng(np.random.randint(2048) + self.rank)
41

Jiezhong Qiu's avatar
Jiezhong Qiu committed
42
        # copied from torch.nn.init.kaiming_uniform_
43
44
45
        fan = nn.init._calculate_correct_fan(self.weight[0], 'fan_in')
        gain = nn.init.calculate_gain('leaky_relu', math.sqrt(5))
        std = gain / math.sqrt(fan)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
46
        bound = math.sqrt(3.0) * std
47
48
        device = self.weight.device
        dtype = self.weight.dtype
49
        weight = rng.uniform(-bound, bound, size=tuple(self.weight.size()))
Rick Ho's avatar
Rick Ho committed
50
        self.weight.data = torch.tensor(weight, dtype=dtype, device=device)
51
52
53
54
55
56

        if self.bias is not None:
            fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[0])
            bound = 1 / math.sqrt(fan_in)
            bias = rng.uniform(-bound, bound, size=tuple(self.bias.size()))
            self.bias.data = torch.tensor(bias, dtype=dtype, device=device)
Rick Ho's avatar
Rick Ho committed
57
58

    def forward(self, inp, fwd_expert_count):
Rick Ho's avatar
Rick Ho committed
59
60
61
        r'''
        Call MOE function
        '''
62
        x = MOELinear.apply(inp, self.weight, fwd_expert_count)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
63
        if self.bias is not None:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
64
65
66
67
            # TODO: torch.repeat_interleave seems have wrong
            # behaviors in backward, leading to incorrect
            # gradient computation for bias.
            # Thus we use a for-loop to manually expand the bias.
68
            # This part should finally goes to MOELinear.apply.
Jiezhong Qiu's avatar
Jiezhong Qiu committed
69
            # bias = torch.repeat_interleave(self.bias,
70
71
72
73
            #        fwd_expert_count.to(self.bias.device), dim=0)
            bias = []
            for i in range(self.num_expert):
                if fwd_expert_count[i] > 0:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
74
75
76
77
78
                    bias.append(
                        self.bias[i].unsqueeze(0).expand(
                            fwd_expert_count[i], -1
                        )
                    )
79
            bias = torch.cat(bias, dim=0)
80
81
            x = x + bias
        return x
Rick Ho's avatar
Rick Ho committed
82

Jiezhong Qiu's avatar
Jiezhong Qiu committed
83
84
85
86
87
88
89
    def extra_repr(self) -> str:
        return 'num_expert={}, in_features={}, \
                out_features={}, bias={}, rank={}'.format(
                    self.num_expert, self.in_feat,
                    self.out_feat, self.bias is not None, self.rank
        )

Rick Ho's avatar
Rick Ho committed
90

Rick Ho's avatar
Rick Ho committed
91
92
93
94
95
96
97
98
99
100
def mark_module_parallel_comm(module, comm):
    r'''
    Mark all parameters in `module` as doing data parallel in `comm`, where
    `comm` may be one of `'world', 'dp', 'none'`.
    '''
    for p in module.parameters():
        setattr(p, 'dp_comm', comm)


def _fmoe_general_global_forward(inp, gate, expert_fn, num_expert, world_size):
Rick Ho's avatar
Rick Ho committed
101
102
103
104
105
106
    r'''
    A private function that performs the following steps to complete the MoE
    computation.
    * Count the number of tokens from each worker to each expert.
    * Send the features to their target position so that input features to each
    expert are contiguous in memory.
Rick Ho's avatar
Rick Ho committed
107
    * Perform the forward computation of the experts using `expert_fn`
Rick Ho's avatar
Rick Ho committed
108
109
110
111
    * Gather the output features of experts back, and reorder them as sentences.
    Intermediate results like expert counts are hidden from users by this
    function.
    '''
112
    (
Rick Ho's avatar
Rick Ho committed
113
114
        pos, local_expert_count, global_expert_count, fwd_expert_count,
        fwd_batch_size
115
116
    ) = moe_prepare_forward(gate, num_expert, world_size)
    x = MOEScatter.apply(
Rick Ho's avatar
Rick Ho committed
117
118
        inp, pos, local_expert_count, global_expert_count, fwd_batch_size,
        world_size
119
    )
Rick Ho's avatar
Rick Ho committed
120
    x = expert_fn(x, fwd_expert_count)
121
122
123
    x = MOEGather.apply(
        x, pos, local_expert_count, global_expert_count, inp.shape[0], world_size
    )
Rick Ho's avatar
Rick Ho committed
124
125
126
    return x


Rick Ho's avatar
Rick Ho committed
127
class FMoE(nn.Module):
Rick Ho's avatar
Rick Ho committed
128
    r'''
Rick Ho's avatar
Rick Ho committed
129
130
    A general moe implementation that supports an arbitrary module as the
    expert.
Rick Ho's avatar
Rick Ho committed
131
132
133
134
135
136
137
138
139
    * `num_expert` stands for the number of experts on **each** worker.
    * `world_size` stands for the total number of workers that contains
    different experts.
    * `mp_group` can be a torch's communication group, indicating that model
    parallel is applied across the group, which means that workers in the group
    hold the same copy of the input feature, and demands the same copy of the
    output. FMoE saves computation by slicing the input in the mp group and
    performing all-gather after the MLP computation.
    * `top_k` stands for the number of experts each token is going to.
Rick Ho's avatar
Rick Ho committed
140
141
142
    * `gate` is a gate class which can found in `fmoe.gates`.
    * `expert` can be specified as a module class, it is used to generate
    `num_expert` expert modules.
Rick Ho's avatar
Rick Ho committed
143
    '''
Rick Ho's avatar
Rick Ho committed
144
    def __init__(self, num_expert=32, d_model=1024, world_size=1, mp_group=None,
Rick Ho's avatar
Rick Ho committed
145
            top_k=2, gate=NaiveGate, expert=None):
Rick Ho's avatar
Rick Ho committed
146
        super().__init__()
Rick Ho's avatar
Rick Ho committed
147
148
149
        self.num_expert = num_expert
        self.d_model = d_model
        self.world_size = world_size
Rick Ho's avatar
fmoefy  
Rick Ho committed
150
        self.mp_group = mp_group
Rick Ho's avatar
Rick Ho committed
151
152
153
154
155
156
        if mp_group is None:
            self.mp_size = 1
            self.mp_rank = 0
        else:
            self.mp_size = mp_group.size()
            self.mp_rank = mp_group.rank()
Rick Ho's avatar
Rick Ho committed
157
        self.top_k = top_k
Rick Ho's avatar
Rick Ho committed
158
        self.gate = gate(d_model, num_expert, world_size, top_k)
Rick Ho's avatar
Rick Ho committed
159
        if expert is not None:
160
            self.experts = nn.ModuleList([expert(d_model)
161
162
163
164
                for _ in range(num_expert)])
            self.experts_fused = False
        else:
            self.experts_fused = True
Rick Ho's avatar
Rick Ho committed
165
166

    def expert_fn(self, inp, fwd_expert_count):
167
        if self.experts_fused:
Rick Ho's avatar
Rick Ho committed
168
169
170
171
172
173
174
175
176
            return self.experts(inp, fwd_expert_count)
        outputs = []
        base_idx = 0
        for i in range(self.num_expert):
            batch_size = fwd_expert_count[i].item()
            inp_slice = inp[base_idx:base_idx + batch_size]
            outputs.append(self.experts[i](inp_slice))
            base_idx += batch_size
        return torch.cat(outputs, dim=0)
Rick Ho's avatar
Rick Ho committed
177

178
    def mark_parallel_comm(self, expert_dp_comm='none'):
Rick Ho's avatar
Rick Ho committed
179
        r'''
Rick Ho's avatar
Rick Ho committed
180
181
182
183
184
        Automatically mark the data parallel comms of the parameters within the
        module. This can be typically called at the end of the __init__ function
        in child classes.
        '''
        if self.experts is not None:
185
            comm = expert_dp_comm
Rick Ho's avatar
Rick Ho committed
186
187
188
189
190
191
192
193
194
195
196
197
            if isinstance(self.experts, list):
                for e in self.experts:
                    mark_module_parallel_comm(e, comm)
            else:
                mark_module_parallel_comm(self.experts, comm)
        mark_module_parallel_comm(self.gate, 'world')

    def forward(self, inp):
        r'''
        The FMoE module first computes gate output, and then conduct MoE forward
        according to the gate.  The score of the selected gate given by the
        expert is multiplied to the experts' output tensors as a weight.
Rick Ho's avatar
Rick Ho committed
198
        '''
Rick Ho's avatar
Rick Ho committed
199
        if self.mp_size > 1:
Sengxian's avatar
Sengxian committed
200
201
            inp = Slice.apply(inp,
                    self.mp_rank, self.mp_size, self.mp_group)
Sengxian's avatar
Sengxian committed
202

Rick Ho's avatar
Rick Ho committed
203
        gate_top_k_idx, gate_score = self.gate(inp)
204
205
        # to: (BxLxtop_k) x d_model
        inp = inp.repeat_interleave(repeats=self.top_k, dim=0)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
206
        x = _fmoe_general_global_forward(inp, gate_top_k_idx, self.expert_fn,
Rick Ho's avatar
Rick Ho committed
207
                self.num_expert, self.world_size)
208
        # to: (BxL) x top_k x d_model
Rick Ho's avatar
Rick Ho committed
209
210
211
        x = x.view(-1, self.top_k, self.d_model)
        # to: (BxL) x d_model
        x = torch.bmm(gate_score, x).reshape(-1, self.d_model)
Sengxian's avatar
Sengxian committed
212

Rick Ho's avatar
Rick Ho committed
213
        if self.mp_size > 1:
Rick Ho's avatar
Rick Ho committed
214
            x = AllGather.apply(x,
Rick Ho's avatar
Rick Ho committed
215
                    self.mp_rank, self.mp_size, self.mp_group)
Rick Ho's avatar
Rick Ho committed
216
        return x