Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
FastMoE
Commits
3c24222c
Commit
3c24222c
authored
Feb 21, 2021
by
Jiezhong Qiu
Browse files
add and initialize bias term in FMoELinear
parent
406955e7
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
7 deletions
+19
-7
fmoe/layers.py
fmoe/layers.py
+19
-7
No files found.
fmoe/layers.py
View file @
3c24222c
...
@@ -19,13 +19,18 @@ class FMoELinear(nn.Module):
...
@@ -19,13 +19,18 @@ class FMoELinear(nn.Module):
performed in parallel to increase the performance.
performed in parallel to increase the performance.
The FMoELinear module provides such function.
The FMoELinear module provides such function.
'''
'''
def
__init__
(
self
,
num_expert
=
32
,
in_feat
=
1024
,
out_feat
=
1024
,
rank
=
0
):
def
__init__
(
self
,
num_expert
:
int
,
in_feat
:
int
,
out_feat
:
int
,
bias
:
bool
=
True
,
rank
:
int
=
0
):
super
().
__init__
()
super
().
__init__
()
self
.
num_expert
=
num_expert
self
.
num_expert
=
num_expert
self
.
in_feat
=
in_feat
self
.
in_feat
=
in_feat
self
.
out_feat
=
out_feat
self
.
out_feat
=
out_feat
self
.
rank
=
rank
self
.
rank
=
rank
self
.
weight
=
nn
.
Parameter
(
torch
.
Tensor
(
num_expert
,
out_feat
,
in_feat
))
self
.
weight
=
nn
.
Parameter
(
torch
.
Tensor
(
num_expert
,
out_feat
,
in_feat
))
if
bias
:
self
.
bias
=
nn
.
Parameter
(
torch
.
Tensor
(
num_expert
,
out_feat
))
else
:
self
.
register_parameter
(
'bias'
,
None
)
self
.
reset_parameters
()
self
.
reset_parameters
()
def
reset_parameters
(
self
):
def
reset_parameters
(
self
):
...
@@ -41,17 +46,24 @@ class FMoELinear(nn.Module):
...
@@ -41,17 +46,24 @@ class FMoELinear(nn.Module):
bound
=
math
.
sqrt
(
3.0
)
*
std
bound
=
math
.
sqrt
(
3.0
)
*
std
device
=
self
.
weight
.
device
device
=
self
.
weight
.
device
dtype
=
self
.
weight
.
dtype
dtype
=
self
.
weight
.
dtype
for
i
in
range
(
self
.
num_expert
):
weight
=
rng
.
uniform
(
-
bound
,
bound
,
size
=
tuple
(
self
.
weight
.
size
()))
weight
=
rng
.
uniform
(
-
bound
,
bound
,
self
.
weight
.
data
=
torch
.
tensor
(
weight
,
dtype
=
dtype
,
device
=
device
)
size
=
tuple
(
self
.
weight
[
i
].
size
()))
self
.
weight
.
data
[
i
]
=
torch
.
tensor
(
weight
,
if
self
.
bias
is
not
None
:
dtype
=
dtype
,
device
=
device
)
fan_in
,
_
=
nn
.
init
.
_calculate_fan_in_and_fan_out
(
self
.
weight
[
0
])
bound
=
1
/
math
.
sqrt
(
fan_in
)
bias
=
rng
.
uniform
(
-
bound
,
bound
,
size
=
tuple
(
self
.
bias
.
size
()))
self
.
bias
.
data
=
torch
.
tensor
(
bias
,
dtype
=
dtype
,
device
=
device
)
def
forward
(
self
,
inp
,
fwd_expert_count
):
def
forward
(
self
,
inp
,
fwd_expert_count
):
r
'''
r
'''
Call MOE function
Call MOE function
'''
'''
return
MOELinear
.
apply
(
inp
,
self
.
weight
,
fwd_expert_count
)
x
=
MOELinear
.
apply
(
inp
,
self
.
weight
,
fwd_expert_count
)
if
self
.
bias
:
bias
=
torch
.
repeat_interleave
(
self
.
bias
,
fwd_expert_count
,
dim
=
0
)
x
=
x
+
bias
return
x
def
mark_module_parallel_comm
(
module
,
comm
):
def
mark_module_parallel_comm
(
module
,
comm
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment