Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
FastMoE
Commits
269f3fd4
"git@developer.sourcefind.cn:OpenDAS/torchani.git" did not exist on "168b05939ee36f68a8c2a24d72f07dab8782657c"
Commit
269f3fd4
authored
Feb 20, 2021
by
Jiezhong Qiu
Browse files
fix pylint issues
parent
1a6073b5
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
10 additions
and
8 deletions
+10
-8
fmoe/distributed.py
fmoe/distributed.py
+1
-1
fmoe/layers.py
fmoe/layers.py
+7
-6
fmoe/transformer.py
fmoe/transformer.py
+2
-1
No files found.
fmoe/distributed.py
View file @
269f3fd4
...
@@ -103,7 +103,7 @@ class DistributedGroupedDataParallel(nn.Module):
...
@@ -103,7 +103,7 @@ class DistributedGroupedDataParallel(nn.Module):
synced
=
_unflatten_dense_tensors
(
coalesced
,
datas
)
synced
=
_unflatten_dense_tensors
(
coalesced
,
datas
)
for
d
,
s
in
zip
(
datas
,
synced
):
for
d
,
s
in
zip
(
datas
,
synced
):
d
.
copy_
(
s
)
d
.
copy_
(
s
)
def
forward
(
self
,
*
args
,
**
kwargs
):
def
forward
(
self
,
*
args
,
**
kwargs
):
r
'''
r
'''
Directly call the module's forward function.
Directly call the module's forward function.
...
...
fmoe/layers.py
View file @
269f3fd4
r
'''
r
'''
Layers that FMoE provides to users
Layers that FMoE provides to users
'''
'''
import
math
import
torch
import
torch
import
torch.nn
as
nn
import
torch.nn
as
nn
import
numpy
as
np
import
numpy
as
np
import
math
from
.functions
import
moe_prepare_forward
from
.functions
import
moe_prepare_forward
from
.functions
import
MOEScatter
,
MOEGather
,
MOELinear
from
.functions
import
MOEScatter
,
MOEGather
,
MOELinear
...
@@ -34,17 +34,18 @@ class FMoELinear(nn.Module):
...
@@ -34,17 +34,18 @@ class FMoELinear(nn.Module):
'''
'''
rng
=
np
.
random
.
default_rng
(
np
.
random
.
randint
(
2048
)
+
self
.
rank
)
rng
=
np
.
random
.
default_rng
(
np
.
random
.
randint
(
2048
)
+
self
.
rank
)
# copied from
https://pytorch.org/docs/stable/nn.init.html#
torch.nn.init.kaiming_uniform_
# copied from torch.nn.init.kaiming_uniform_
fan
=
nn
.
init
.
_calculate_correct_fan
(
self
.
weight
[
0
],
'fan_in'
)
fan
=
nn
.
init
.
_calculate_correct_fan
(
self
.
weight
[
0
],
'fan_in'
)
gain
=
nn
.
init
.
calculate_gain
(
'leaky_relu'
,
math
.
sqrt
(
5
))
gain
=
nn
.
init
.
calculate_gain
(
'leaky_relu'
,
math
.
sqrt
(
5
))
std
=
gain
/
math
.
sqrt
(
fan
)
std
=
gain
/
math
.
sqrt
(
fan
)
bound
=
math
.
sqrt
(
3.0
)
*
std
# Calculate uniform bounds from standard deviation
bound
=
math
.
sqrt
(
3.0
)
*
std
device
=
self
.
weight
.
device
device
=
self
.
weight
.
device
dtype
=
self
.
weight
.
dtype
dtype
=
self
.
weight
.
dtype
for
i
in
range
(
self
.
num_expert
):
for
i
in
range
(
self
.
num_expert
):
weight
=
rng
.
uniform
(
-
bound
,
bound
,
size
=
tuple
(
self
.
weight
[
i
].
size
()))
weight
=
rng
.
uniform
(
-
bound
,
bound
,
self
.
weight
.
data
[
i
]
=
torch
.
tensor
(
weight
,
dtype
=
dtype
,
device
=
device
)
size
=
tuple
(
self
.
weight
[
i
].
size
()))
self
.
weight
.
data
[
i
]
=
torch
.
tensor
(
weight
,
dtype
=
dtype
,
device
=
device
)
def
forward
(
self
,
inp
,
fwd_expert_count
):
def
forward
(
self
,
inp
,
fwd_expert_count
):
r
'''
r
'''
...
...
fmoe/transformer.py
View file @
269f3fd4
...
@@ -52,7 +52,8 @@ class FMoETransformerMLP(FMoE):
...
@@ -52,7 +52,8 @@ class FMoETransformerMLP(FMoE):
super
().
__init__
(
num_expert
=
num_expert
,
d_model
=
d_model
,
gate
=
gate
,
super
().
__init__
(
num_expert
=
num_expert
,
d_model
=
d_model
,
gate
=
gate
,
top_k
=
top_k
,
world_size
=
world_size
,
mp_group
=
mp_group
,
top_k
=
top_k
,
world_size
=
world_size
,
mp_group
=
mp_group
,
expert_fn
=
expert_fn
)
expert_fn
=
expert_fn
)
self
.
experts
=
_Expert
(
num_expert
,
d_model
,
d_hidden
,
activation
,
self
.
mp_rank
)
self
.
experts
=
_Expert
(
num_expert
,
d_model
,
d_hidden
,
activation
,
rank
=
self
.
mp_rank
)
self
.
pre_lnorm
=
pre_lnorm
self
.
pre_lnorm
=
pre_lnorm
self
.
layer_norm
=
nn
.
LayerNorm
(
d_model
)
self
.
layer_norm
=
nn
.
LayerNorm
(
d_model
)
self
.
mark_parallel_comm
()
self
.
mark_parallel_comm
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment