moe_cuda_kernel.cu 10.4 KB
Newer Older
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
1
2
#include <torch/extension.h>
#include <torch/torch.h>
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
3
4
5
6
#include <cstdio>
#include <iostream>
#include <vector>

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
7
8
#include <cuda.h>
#include <cuda_runtime.h>
9
#include <cublas_v2.h>
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
10
#include <helper_cuda.h> 
Jiezhong Qiu's avatar
Jiezhong Qiu committed
11
#include <c10/cuda/CUDAGuard.h>
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
12

Rick Ho's avatar
Rick Ho committed
13
#include "timer.hh"
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
14

Rick Ho's avatar
Rick Ho committed
15
16
#include "cublas_wrapper.h"
#include "cuda_stream_manager.h"
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
17

Rick Ho's avatar
Rick Ho committed
18
#define CEIL(_x_,_y_) (((_x_)-1)/(_y_)+1)
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
19

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
20
21
template <typename scalar_t>
__global__
Rick Ho's avatar
Rick Ho committed
22
23
void generate_ptr_offset_kernel(size_t n, const scalar_t* base, size_t stride,
		const int* offset, const scalar_t** ptrs) { 
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
24
25
26
27
28
29
	size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
	if (idx < n) {
		ptrs[idx] = base + stride * offset[idx];
	}
}

30
31
template <typename scalar_t>
__global__
Rick Ho's avatar
Rick Ho committed
32
void batch_scatter_kernel(size_t wid, const int* pos, 
33
34
35
36
37
38
39
40
		const scalar_t* inbuf, scalar_t* oubuf) { 
	inbuf += wid * blockIdx.x;
	oubuf += wid * pos[blockIdx.x];
	for (int i = threadIdx.x; i < wid; i += blockDim.x) {
		oubuf[i] = inbuf[i];
	}
}

Rick Ho's avatar
Rick Ho committed
41
void moe_cuda_expert_count_impl(
Rick Ho's avatar
Rick Ho committed
42
        const int* d_gate,
Rick Ho's avatar
Rick Ho committed
43
44
45
46
		int* expert_count,
		int* d_pos,
		const size_t num_expert,
        const size_t batch_size) {
Rick Ho's avatar
Rick Ho committed
47
    int *gate = new int[batch_size];
Rick Ho's avatar
Rick Ho committed
48
	int *expert_ptr = new int[num_expert];
Rick Ho's avatar
Rick Ho committed
49
	memset(expert_count, 0, sizeof(int) * num_expert);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
50

Rick Ho's avatar
Rick Ho committed
51
52
	checkCudaErrors(cudaMemcpy(gate, d_gate, sizeof(int) * batch_size,
				cudaMemcpyDeviceToHost));
Rick Ho's avatar
Rick Ho committed
53

Rick Ho's avatar
Rick Ho committed
54
55
56
57
58
59
	for (int i = 0; i < batch_size; ++i) {
		++expert_count[gate[i]];
	}
	expert_ptr[0] = 0;
	for (int i = 1; i < num_expert; ++i) {
		expert_ptr[i] = expert_ptr[i - 1] + expert_count[i - 1];
Rick Ho's avatar
Rick Ho committed
60
	}
Rick Ho's avatar
Rick Ho committed
61

62
63
64
65
66
67
68
	int *pos = new int[batch_size];

	for (int i = 0; i < batch_size; ++i) {
		pos[i] = expert_ptr[gate[i]]++;
	}
	checkCudaErrors(cudaMemcpy(d_pos, pos, sizeof(int) * batch_size,
				cudaMemcpyHostToDevice));
Rick Ho's avatar
Rick Ho committed
69
70
71
72
73
74
75
76
77
78
	delete [] gate;
	delete [] expert_ptr;
}

template <typename scalar_t>
void moe_cuda_local_scatter_impl(
        const scalar_t* input,
		const int* d_pos,
		scalar_t* input_buf,
		const size_t batch_size,
79
80
		const size_t in_feat, 
		CudaStreamManager* smgr) {
81
	batch_scatter_kernel<scalar_t>
82
		<<<batch_size, 256, 0, smgr->stream(0)>>>(in_feat, d_pos, input,
83
				input_buf); 
84
	smgr->sync(1);
Rick Ho's avatar
Rick Ho committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
}

template <typename scalar_t>
__global__
void batch_gather_kernel(size_t wid, const int* pos, 
		const scalar_t* inbuf, scalar_t* oubuf) { 
	inbuf += wid * pos[blockIdx.x];
	oubuf += wid * blockIdx.x;
	for (int i = threadIdx.x; i < wid; i += blockDim.x) {
		oubuf[i] = inbuf[i];
	}
}

template <typename scalar_t>
void moe_cuda_local_gather_impl(
        const scalar_t* output_buf,
		const int* d_pos,
		scalar_t* output,
		const size_t batch_size,
104
105
		const size_t out_feat,
		CudaStreamManager* smgr) {
Rick Ho's avatar
Rick Ho committed
106
	batch_gather_kernel<scalar_t>
107
		<<<batch_size, 256, 0, smgr->stream(0)>>>(out_feat, d_pos, output_buf,
Rick Ho's avatar
Rick Ho committed
108
				output); 
109
	smgr->sync(1);
Rick Ho's avatar
Rick Ho committed
110
111
112
113
114
115
116
117
118
119
}

template <typename scalar_t>
void moe_cuda_forward_impl(
        const scalar_t* input_buf,
        const scalar_t* weight,
		const int* expert_count,
        scalar_t* output_buf,
        const size_t in_feat,
        const size_t out_feat,
120
121
        const size_t num_expert,
		CudaStreamManager* smgr) {
Rick Ho's avatar
Rick Ho committed
122
123
	scalar_t alpha = 1, beta = 0; 

Rick Ho's avatar
Rick Ho committed
124
125
126
127
128
	for (int i = 0, ptr = 0; i < num_expert; ++i) {
		if (expert_count[i] == 0) {
			continue;
		}
		// Use T(B) x T(A) = T(C) to produce row-major C
129
130
		checkCudaErrors(cublasXgemm(
				smgr->handle(i),
Rick Ho's avatar
Rick Ho committed
131
				CUBLAS_OP_T,
Rick Ho's avatar
Rick Ho committed
132
				CUBLAS_OP_N,
Rick Ho's avatar
Rick Ho committed
133
				out_feat, expert_count[i], in_feat,
Rick Ho's avatar
Rick Ho committed
134
				&alpha,
Rick Ho's avatar
Rick Ho committed
135
				weight + i * in_feat * out_feat, in_feat,
Rick Ho's avatar
Rick Ho committed
136
				input_buf + ptr * in_feat, in_feat,
Rick Ho's avatar
Rick Ho committed
137
				&beta,
Rick Ho's avatar
Rick Ho committed
138
				output_buf + out_feat * ptr, out_feat
Rick Ho's avatar
Rick Ho committed
139
				));
Rick Ho's avatar
Rick Ho committed
140

Rick Ho's avatar
Rick Ho committed
141
142
		ptr += expert_count[i];
	}
143
	smgr->sync(num_expert);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
144
145
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
146
template <typename scalar_t>
Rick Ho's avatar
Rick Ho committed
147
148
149
150
151
152
153
void moe_cuda_backward_impl(
        const scalar_t* grad_output_buf,
        const scalar_t* input_buf,
		const scalar_t* weight,
		const int* expert_count,
        scalar_t* grad_input_buf,
        scalar_t* grad_weight,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
154
155
156
        const size_t batch_size,
        const size_t in_feat,
        const size_t out_feat,
157
158
        const size_t num_expert,
		CudaStreamManager* smgr) {
Rick Ho's avatar
Rick Ho committed
159
    scalar_t alpha = 1, beta = 0;
Jiezhong Qiu's avatar
Jiezhong Qiu committed
160

Rick Ho's avatar
Rick Ho committed
161
162
163
164
165
166
167
168
169
	for (int i = 0, ptr = 0; i < num_expert; ++i) {
		if (expert_count[i] == 0) {
			cudaMemset(grad_weight + i * in_feat * out_feat, 0, 
					sizeof(scalar_t) * in_feat * out_feat);
			continue;
		}
		// Use T(B) x T(A) = T(C) to produce row-major C

		// Backward input: g_i = w @ g_o
170
171
		checkCudaErrors(cublasXgemm(
				smgr->handle(i),
Rick Ho's avatar
Rick Ho committed
172
173
174
175
176
177
178
179
180
181
182
				CUBLAS_OP_N,
				CUBLAS_OP_N,
				in_feat, expert_count[i], out_feat,
				&alpha,
				weight + i * in_feat * out_feat, in_feat,
				grad_output_buf + ptr * out_feat, out_feat,
				&beta,
				grad_input_buf + in_feat * ptr, in_feat
				));

		// Backward weight: g_w = i @ g_o
183
184
		checkCudaErrors(cublasXgemm(
				smgr->handle(i),
Rick Ho's avatar
Rick Ho committed
185
186
187
188
189
190
191
192
193
194
195
196
				CUBLAS_OP_N,
				CUBLAS_OP_T,
				in_feat, out_feat, expert_count[i],
				&alpha,
				input_buf + in_feat * ptr, in_feat,
				grad_output_buf + ptr * out_feat, out_feat,
				&beta,
				grad_weight + i * in_feat * out_feat, in_feat
				));

		ptr += expert_count[i];
	}
197
	smgr->sync(num_expert);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
198
}
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
199

Rick Ho's avatar
Rick Ho committed
200
201

std::vector<torch::Tensor> moe_cuda_expert_count(
202
203
		torch::Tensor gate, 
		size_t num_expert) {
Rick Ho's avatar
Rick Ho committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
	const auto batch_size = gate.size(0);

	auto ec_options = torch::TensorOptions().dtype(torch::kInt32);
	auto expert_count = torch::empty(num_expert, ec_options);

	auto pos_options = torch::TensorOptions()
		.device(gate.device())
		.dtype(torch::kInt32);
	auto pos = torch::empty(batch_size, pos_options);
	moe_cuda_expert_count_impl(
			gate.data_ptr<int>(),
			expert_count.data_ptr<int>(),
			pos.data_ptr<int>(),
			num_expert,
			batch_size);

	return {expert_count, pos};
}

std::vector<torch::Tensor> moe_cuda_local_scatter(
    torch::Tensor input,
	torch::Tensor pos) {
226
	auto smgr = getCudaStreamManager(input.device().index());
Rick Ho's avatar
Rick Ho committed
227
228
229
230
231
232
233
234
235
236
237
238
	const auto batch_size = input.size(0);
    const auto in_feat = input.size(1);

	auto input_buf = torch::empty_like(input);

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_local_scatter_cuda", 
			([&] {
		moe_cuda_local_scatter_impl<scalar_t>(
			input.data_ptr<scalar_t>(),
			pos.data_ptr<int>(),
			input_buf.data_ptr<scalar_t>(),
			batch_size,
239
240
			in_feat,
			smgr);
Rick Ho's avatar
Rick Ho committed
241
242
243
244
245
246
247
	}));
	return {input_buf,};
}

std::vector<torch::Tensor> moe_cuda_local_gather(
	torch::Tensor output_buf,
	torch::Tensor pos) {
248
	auto smgr = getCudaStreamManager(output_buf.device().index());
Rick Ho's avatar
Rick Ho committed
249
250
251
252
253
254
255
256
257
258
259
260
	const auto batch_size = output_buf.size(0);
    const auto out_feat = output_buf.size(1);

	auto output = torch::empty_like(output_buf);

    AT_DISPATCH_FLOATING_TYPES(output_buf.scalar_type(), "moe_local_gather_cuda", 
			([&] {
		moe_cuda_local_gather_impl<scalar_t>(
			output_buf.data_ptr<scalar_t>(),
			pos.data_ptr<int>(),
			output.data_ptr<scalar_t>(),
			batch_size,
261
262
			out_feat,
			smgr);
Rick Ho's avatar
Rick Ho committed
263
264
265
266
	}));
	return {output,};
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
267
std::vector<torch::Tensor> moe_cuda_forward(
Rick Ho's avatar
Rick Ho committed
268
269
270
        torch::Tensor input_buf,
        torch::Tensor weight,
		torch::Tensor expert_count
Rick Ho's avatar
Rick Ho committed
271
		) {
272
	auto smgr = getCudaStreamManager(input_buf.device().index());
Rick Ho's avatar
Rick Ho committed
273
	const auto batch_size = input_buf.size(0);
Rick Ho's avatar
Rick Ho committed
274
275
276
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
277
            
Rick Ho's avatar
Rick Ho committed
278
#ifdef MOE_DEBUG
Rick Ho's avatar
Rick Ho committed
279
280
    printf("[forward] expert=%ld, in_feat (d_model)=%ld, out_feat (d_ffn)=%ld\n", 
			num_expert, in_feat, out_feat);
Rick Ho's avatar
Rick Ho committed
281
#endif
Rick Ho's avatar
Rick Ho committed
282
283
284
285
	auto out_options = torch::TensorOptions()
		.device(input_buf.device())
		.dtype(input_buf.dtype());
    auto output = torch::empty({batch_size, out_feat}, out_options);
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
286
    
Rick Ho's avatar
Rick Ho committed
287
288
289
290
291
292
293
294
295
    AT_DISPATCH_FLOATING_TYPES(input_buf.scalar_type(), "moe_forward_cuda", 
			([&] {
		moe_cuda_forward_impl<scalar_t>(
			input_buf.data_ptr<scalar_t>(),
			weight.data_ptr<scalar_t>(),
			expert_count.data_ptr<int>(),
			output.data_ptr<scalar_t>(),
			in_feat,
			out_feat,
296
297
			num_expert,
			smgr
Rick Ho's avatar
Rick Ho committed
298
		);
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
299
300
301
302
303
    }));
    
    return {output, };           
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
304
std::vector<torch::Tensor> moe_cuda_backward(
Rick Ho's avatar
Rick Ho committed
305
306
307
308
    torch::Tensor grad_output_buf, // [batch_size x out_feat]
    torch::Tensor input_buf, // [batch_size x out_feat]
    torch::Tensor weight, // [num_expert x out_feat x in_feat]
	torch::Tensor expert_count
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
309
) {
310
	auto smgr = getCudaStreamManager(input_buf.device().index());
Rick Ho's avatar
Rick Ho committed
311
    const auto batch_size = input_buf.size(0);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
312
313
314
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
315

Rick Ho's avatar
Rick Ho committed
316
#ifdef MOE_DEBUG
Rick Ho's avatar
Rick Ho committed
317
318
319
    printf("[backward] b=%ld, expert=%ld, in_feat (d_model)=%ld, "
			"out_feat (d_ffn)=%ld\n",
			batch_size, num_expert, in_feat, out_feat);
Rick Ho's avatar
Rick Ho committed
320
#endif
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
321

Rick Ho's avatar
Rick Ho committed
322
323
    auto grad_input_buf = grad_output_buf.new_empty({batch_size, in_feat}); 
    auto grad_weight = grad_output_buf.new_empty({num_expert, out_feat, in_feat});
Jiezhong Qiu's avatar
Jiezhong Qiu committed
324

Rick Ho's avatar
Rick Ho committed
325
326
327
328
    AT_DISPATCH_FLOATING_TYPES(input_buf.scalar_type(), "moe_cuda_backward", ([&] {
        moe_cuda_backward_impl<scalar_t>(
            grad_output_buf.data_ptr<scalar_t>(),
            input_buf.data_ptr<scalar_t>(),
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
329
            weight.data_ptr<scalar_t>(),
Rick Ho's avatar
Rick Ho committed
330
331
			expert_count.data_ptr<int>(),
            grad_input_buf.data_ptr<scalar_t>(),
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
332
333
334
            grad_weight.data_ptr<scalar_t>(),
            batch_size,
            in_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
335
            out_feat,
336
337
            num_expert,
			smgr
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
338
339
340
        );
    }));

Rick Ho's avatar
Rick Ho committed
341
    return {grad_input_buf, grad_weight};
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
342
343
}

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
344
345

/*
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
346
int main() {
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
347
348
349
350
351
352
    typedef float data_t;
    size_t batch_size = 4096;
    size_t top_k = 2;
    size_t num_expert = 128;
    size_t in_feat = 1024;
    size_t out_feat = 4096;
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
353
	data_t *input, *weight;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
354
	data_t *output;
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
355
	size_t *gate;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
356

Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
357
358
	checkCudaErrors(cudaMalloc(&input, batch_size * in_feat * sizeof(data_t)));
	checkCudaErrors(cudaMalloc(&weight, num_expert * in_feat * out_feat * sizeof(data_t)));	
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
359
	checkCudaErrors(cudaMalloc(&output, batch_size * top_k * out_feat * sizeof(data_t)));
Jiezhong Qiu's avatar
Jiezhong Qiu committed
360
361
362
363
    checkCudaErrors(cudaMalloc(&gate, batch_size * top_k * sizeof(size_t)));
    
    size_t nt = 16;
    double tsum = 0, tmax = 0;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
364

Jiezhong Qiu's avatar
Jiezhong Qiu committed
365
366
367
368
369
370
    size_t *gate_host = new size_t[batch_size * top_k];
    for (size_t i=0; i<batch_size * top_k; ++i) {
        gate_host[i] = rand() % num_expert;
    } 
    checkCudaErrors(cudaMemcpy(gate, gate_host, batch_size * top_k * sizeof(size_t), cudaMemcpyHostToDevice));

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
371
    moe_first_linear_cuda_forward<data_t>(input, gate, weight, output, batch_size, top_k, in_feat, out_feat);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
372
373
374
    
    for (size_t i=0; i<nt; ++i) {
        timestamp(start);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
375
		moe_first_linear_cuda_forward<data_t>(input, gate, weight, output, batch_size, top_k, in_feat, out_feat);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
376
377
378
379
380
381
382
383
		timestamp(end);
		auto t = getDuration(start, end);
		tsum += t;
		if (t > tmax) tmax = t;
    }
    printf("Mean %.3lf us, max %.3lf us\n", tsum / nt * 1e6, tmax * 1e6);
	double tflops = (double)batch_size * top_k * in_feat * out_feat * nt * 2e-12 / tsum;
	printf("%.3lf TFLOPs\n", tflops);
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
384
}
Rick Ho's avatar
Rick Ho committed
385
*/