inference.py 11.3 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import random
import sys
import time
21
from datetime import date
Shenggan's avatar
Shenggan committed
22
23
24

import numpy as np
import torch
25
import torch.multiprocessing as mp
26
from fastfold.model.hub import AlphaFold
Shenggan's avatar
Shenggan committed
27

28
import fastfold
29
30
31
import fastfold.relax.relax as relax
from fastfold.common import protein, residue_constants
from fastfold.config import model_config
32
from fastfold.model.fastnn import set_chunk_size
33
from fastfold.data import data_pipeline, feature_pipeline, templates
LuGY's avatar
LuGY committed
34
from fastfold.workflow.template import FastFoldDataWorkFlow
35
from fastfold.utils import inject_fastnn
36
from fastfold.data.parsers import parse_fasta
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from fastfold.utils.import_weights import import_jax_weights_
from fastfold.utils.tensor_utils import tensor_tree_map


def add_data_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        '--uniref90_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--mgnify_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--pdb70_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--uniclust30_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--bfd_database_path',
        type=str,
        default=None,
    )
    parser.add_argument('--jackhmmer_binary_path', type=str, default='/usr/bin/jackhmmer')
    parser.add_argument('--hhblits_binary_path', type=str, default='/usr/bin/hhblits')
    parser.add_argument('--hhsearch_binary_path', type=str, default='/usr/bin/hhsearch')
    parser.add_argument('--kalign_binary_path', type=str, default='/usr/bin/kalign')
    parser.add_argument(
        '--max_template_date',
        type=str,
        default=date.today().strftime("%Y-%m-%d"),
    )
    parser.add_argument('--obsolete_pdbs_path', type=str, default=None)
    parser.add_argument('--release_dates_path', type=str, default=None)
LuGY's avatar
LuGY committed
78
    parser.add_argument('--enable_workflow', default=False, action='store_true', help='run inference with ray workflow or not')
Shenggan's avatar
Shenggan committed
79

80
81
82
83
def inference_model(rank, world_size, result_q, batch, args):
    os.environ['RANK'] = str(rank)
    os.environ['LOCAL_RANK'] = str(rank)
    os.environ['WORLD_SIZE'] = str(world_size)
84
    # init distributed for Dynamic Axial Parallelism
85
    fastfold.distributed.init_dap()
86
    torch.cuda.set_device(rank)
Shenggan's avatar
Shenggan committed
87
88
89
90
    config = model_config(args.model_name)
    model = AlphaFold(config)
    import_jax_weights_(model, args.param_path, version=args.model_name)

91
    model = inject_fastnn(model)
Shenggan's avatar
Shenggan committed
92
    model = model.eval()
93
    model = model.cuda()
Shenggan's avatar
Shenggan committed
94

95
96
    set_chunk_size(model.globals.chunk_size)

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    with torch.no_grad():
        batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}

        t = time.perf_counter()
        out = model(batch)
        print(f"Inference time: {time.perf_counter() - t}")

    out = tensor_tree_map(lambda x: np.array(x.cpu()), out)

    result_q.put(out)

    torch.distributed.barrier()
    torch.cuda.synchronize()


def main(args):
    config = model_config(args.model_name)

Shenggan's avatar
Shenggan committed
115
116
117
118
119
120
121
122
    template_featurizer = templates.TemplateHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=config.data.predict.max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
        obsolete_pdbs_path=args.obsolete_pdbs_path)

123
124
125
126
127
128
    use_small_bfd = args.preset == 'reduced_dbs'  # (args.bfd_database_path is None)
    if use_small_bfd:
        assert args.bfd_database_path is not None
    else:
        assert args.bfd_database_path is not None
        assert args.uniclust30_database_path is not None
Shenggan's avatar
Shenggan committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

    data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    feature_processor = feature_pipeline.FeaturePipeline(config.data)
    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if (args.use_precomputed_alignments is None):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    with open(args.fasta_path, "r") as fp:
146
147
        fasta = fp.read()
    seqs, tags = parse_fasta(fasta)
Shenggan's avatar
Shenggan committed
148
149

    for tag, seq in zip(tags, seqs):
150
        batch = [None]
151
152
153
154
155
156
157
158
159
160
        
        fasta_path = os.path.join(args.output_dir, "tmp.fasta")
        with open(fasta_path, "w") as fp:
            fp.write(f">{tag}\n{seq}")

        print("Generating features...")
        local_alignment_dir = os.path.join(alignment_dir, tag)
        if (args.use_precomputed_alignments is None):
            if not os.path.exists(local_alignment_dir):
                os.makedirs(local_alignment_dir)
LuGY's avatar
LuGY committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
            if args.enable_workflow:
                print("Running alignment with ray workflow...")
                alignment_data_workflow_runner = FastFoldDataWorkFlow(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hhsearch_binary_path=args.hhsearch_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    pdb70_database_path=args.pdb70_database_path,
                    use_small_bfd=use_small_bfd,
                    no_cpus=args.cpus,
                    )
                t = time.perf_counter()
                alignment_data_workflow_runner.run(fasta_path, output_dir=output_dir_base, alignment_dir=local_alignment_dir)
                print(f"Alignment data workflow time: {time.perf_counter() - t}")
            else:
                alignment_runner = data_pipeline.AlignmentRunner(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hhsearch_binary_path=args.hhsearch_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    pdb70_database_path=args.pdb70_database_path,
                    use_small_bfd=use_small_bfd,
                    no_cpus=args.cpus,
                )
                alignment_runner.run(fasta_path, local_alignment_dir)
Shenggan's avatar
Shenggan committed
192

193
194
        feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
                                                    alignment_dir=local_alignment_dir)
195

196
197
        # Remove temporary FASTA file
        os.remove(fasta_path)
Shenggan's avatar
Shenggan committed
198

199
200
201
202
        processed_feature_dict = feature_processor.process_features(
            feature_dict,
            mode='predict',
        )
203

204
        batch = processed_feature_dict
Shenggan's avatar
Shenggan committed
205

206
207
208
        manager = mp.Manager()
        result_q = manager.Queue()
        torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))
Shenggan's avatar
Shenggan committed
209

210
        out = result_q.get()
211

212
213
214
215
216
        # Toss out the recycling dimensions --- we don't need them anymore
        batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
        
        plddt = out["plddt"]
        mean_plddt = np.mean(plddt)
Shenggan's avatar
Shenggan committed
217

218
        plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
Shenggan's avatar
Shenggan committed
219

220
221
222
        unrelaxed_protein = protein.from_prediction(features=batch,
                                                    result=out,
                                                    b_factors=plddt_b_factors)
Shenggan's avatar
Shenggan committed
223

224
225
226
227
228
        # Save the unrelaxed PDB.
        unrelaxed_output_path = os.path.join(args.output_dir,
                                                f'{tag}_{args.model_name}_unrelaxed.pdb')
        with open(unrelaxed_output_path, 'w') as f:
            f.write(protein.to_pdb(unrelaxed_protein))
Shenggan's avatar
Shenggan committed
229

230
231
232
233
        amber_relaxer = relax.AmberRelaxation(
            use_gpu=True,
            **config.relax,
        )
Shenggan's avatar
Shenggan committed
234

235
236
237
238
        # Relax the prediction.
        t = time.perf_counter()
        relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
        print(f"Relaxation time: {time.perf_counter() - t}")
Shenggan's avatar
Shenggan committed
239

240
241
242
243
244
        # Save the relaxed PDB.
        relaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_relaxed.pdb')
        with open(relaxed_output_path, 'w') as f:
            f.write(relaxed_pdb_str)
Shenggan's avatar
Shenggan committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "fasta_path",
        type=str,
    )
    parser.add_argument(
        "template_mmcif_dir",
        type=str,
    )
    parser.add_argument("--use_precomputed_alignments",
                        type=str,
                        default=None,
                        help="""Path to alignment directory. If provided, alignment computation 
                is skipped and database path arguments are ignored.""")
    parser.add_argument(
        "--output_dir",
        type=str,
        default=os.getcwd(),
        help="""Name of the directory in which to output the prediction""",
    )
    parser.add_argument("--model_name",
                        type=str,
                        default="model_1",
                        help="""Name of a model config. Choose one of model_{1-5} or 
             model_{1-5}_ptm, as defined on the AlphaFold GitHub.""")
    parser.add_argument("--param_path",
                        type=str,
                        default=None,
                        help="""Path to model parameters. If None, parameters are selected
             automatically according to the model name from 
278
             ./data/params""")
Shenggan's avatar
Shenggan committed
279
280
281
282
    parser.add_argument("--cpus",
                        type=int,
                        default=12,
                        help="""Number of CPUs with which to run alignment tools""")
283
284
285
286
    parser.add_argument("--gpus",
                        type=int,
                        default=1,
                        help="""Number of GPUs with which to run inference""")
Shenggan's avatar
Shenggan committed
287
288
    parser.add_argument('--preset',
                        type=str,
289
                        default='full_dbs',
Shenggan's avatar
Shenggan committed
290
291
292
293
294
295
                        choices=('reduced_dbs', 'full_dbs'))
    parser.add_argument('--data_random_seed', type=str, default=None)
    add_data_args(parser)
    args = parser.parse_args()

    if (args.param_path is None):
296
        args.param_path = os.path.join("data", "params", "params_" + args.model_name + ".npz")
Shenggan's avatar
Shenggan committed
297
298

    main(args)