test_binaries.py 25.8 KB
Newer Older
1
# Copyright (c) Facebook, Inc. and its affiliates.
Myle Ott's avatar
Myle Ott committed
2
#
3
4
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
Myle Ott's avatar
Myle Ott committed
5

6
import contextlib
Myle Ott's avatar
Myle Ott committed
7
8
9
10
11
12
13
14
15
16
17
from io import StringIO
import os
import random
import sys
import tempfile
import unittest

import torch

from fairseq import options

Myle Ott's avatar
Myle Ott committed
18
19
20
21
import preprocess
import train
import generate
import interactive
22
import eval_lm
Myle Ott's avatar
Myle Ott committed
23
import validate
24
25
26
27
28
29
30
31
32
33
34
35


class TestTranslation(unittest.TestCase):

    def test_fconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en')
                generate_main(data_dir)

36
37
38
39
    def test_raw(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_raw') as data_dir:
                create_dummy_data(data_dir)
40
41
42
                preprocess_translation_data(data_dir, ['--dataset-impl', 'raw'])
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--dataset-impl', 'raw'])
                generate_main(data_dir, ['--dataset-impl', 'raw'])
43

44
45
46
47
48
49
50
51
    def test_fp16(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fp16') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--fp16'])
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
52
53
54
55
56
57
58
59
    def test_memory_efficient_fp16(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_memory_efficient_fp16') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--memory-efficient-fp16'])
                generate_main(data_dir)

60
61
62
63
64
65
66
67
    def test_update_freq(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_update_freq') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--update-freq', '3'])
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
68
69
70
71
72
73
74
75
76
77
    def test_max_positions(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_max_positions') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                with self.assertRaises(Exception) as context:
                    train_translation_model(
                        data_dir, 'fconv_iwslt_de_en', ['--max-target-positions', '5'],
                    )
                self.assertTrue(
Myle Ott's avatar
Myle Ott committed
78
                    'skip this example with --skip-invalid-size-inputs-valid-test' in str(context.exception)
Myle Ott's avatar
Myle Ott committed
79
80
81
82
83
84
85
86
87
                )
                train_translation_model(
                    data_dir, 'fconv_iwslt_de_en',
                    ['--max-target-positions', '5', '--skip-invalid-size-inputs-valid-test'],
                )
                with self.assertRaises(Exception) as context:
                    generate_main(data_dir)
                generate_main(data_dir, ['--skip-invalid-size-inputs-valid-test'])

88
89
90
91
92
93
94
95
    def test_generation(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_sampling') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en')
                generate_main(data_dir, [
                    '--sampling',
96
                    '--temperature', '2',
97
98
99
100
101
102
103
                    '--beam', '2',
                    '--nbest', '2',
                ])
                generate_main(data_dir, [
                    '--sampling',
                    '--sampling-topk', '3',
                    '--beam', '2',
Xing Zhou's avatar
Xing Zhou committed
104
105
106
107
108
109
                    '--nbest', '2',
                ])
                generate_main(data_dir, [
                    '--sampling',
                    '--sampling-topp', '0.2',
                    '--beam', '2',
110
111
112
113
                    '--nbest', '2',
                ])
                generate_main(data_dir, ['--prefix-size', '2'])

114
115
116
117
118
    def test_lstm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lstm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
Myle Ott's avatar
Myle Ott committed
119
120
121
                train_translation_model(data_dir, 'lstm_wiseman_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
122
123
124
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
125
126
127
128
129
130
131
132
133
134
135
                ])
                generate_main(data_dir)

    def test_lstm_bidirectional(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lstm_bidirectional') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lstm', [
                    '--encoder-layers', '2',
                    '--encoder-bidirectional',
136
137
138
139
                    '--encoder-hidden-size', '16',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
140
141
                    '--decoder-layers', '2',
                ])
142
143
144
145
146
147
148
                generate_main(data_dir)

    def test_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
149
150
151
152
153
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
154
                ], run_validation=True)
155
156
                generate_main(data_dir)

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def test_transformer_cross_self_attention(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer_cross_self_attention') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--no-cross-attention',
                    '--cross-self-attention',
                    '--layer-wise-attention',
                ], run_validation=True)
                generate_main(data_dir, extra_flags=[])

174
175
176
177
178
179
180
181
    def test_lightconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lightconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lightconv_iwslt_de_en', [
                    '--encoder-conv-type', 'lightweight',
                    '--decoder-conv-type', 'lightweight',
182
183
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
184
185
186
187
188
189
190
191
192
193
194
                ])
                generate_main(data_dir)

    def test_dynamicconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_dynamicconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lightconv_iwslt_de_en', [
                    '--encoder-conv-type', 'dynamic',
                    '--decoder-conv-type', 'dynamic',
195
196
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
197
198
199
                ])
                generate_main(data_dir)

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    def test_levenshtein_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_levenshtein_transformer') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'levenshtein_transformer', [
                    '--apply-bert-init', '--early-exit', '6,6,6',
                    '--criterion', 'nat_loss'
                ], task='translation_lev')
                generate_main(data_dir)

    def test_nonautoregressive_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_nonautoregressive_transformer') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'nonautoregressive_transformer', [
                    '--apply-bert-init', '--src-embedding-copy', '--criterion',
                    'nat_loss', '--noise', 'full_mask', '--pred-length-offset',
                    '--length-loss-factor', '0.1'
                ], task='translation_lev')
                generate_main(data_dir)

    def test_iterative_nonautoregressive_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_iterative_nonautoregressive_transformer') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'iterative_nonautoregressive_transformer', [
                    '--apply-bert-init', '--src-embedding-copy', '--criterion',
                    'nat_loss', '--noise', 'full_mask', '--stochastic-approx',
                    '--dae-ratio', '0.5', '--train-step', '3'
                ], task='translation_lev')
                generate_main(data_dir)

    def test_insertion_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_insertion_transformer') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'insertion_transformer', [
                    '--apply-bert-init', '--criterion', 'nat_loss', '--noise',
                    'random_mask'
                ], task='translation_lev')
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
246
247
248
249
250
251
252
253
254
255
    def test_mixture_of_experts(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_moe') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--task', 'translation_moe',
                    '--method', 'hMoElp',
                    '--mean-pool-gating-network',
                    '--num-experts', '3',
256
257
258
259
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
260
261
262
263
264
265
266
267
268
                ])
                generate_main(data_dir, [
                    '--task', 'translation_moe',
                    '--method', 'hMoElp',
                    '--mean-pool-gating-network',
                    '--num-experts', '3',
                    '--gen-expert', '0'
                ])

269
270
271
272
273
274
275
276
277

class TestStories(unittest.TestCase):

    def test_fconv_self_att_wp(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_self_att_wp') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                config = [
278
279
                    '--encoder-layers', '[(128, 3)] * 2',
                    '--decoder-layers', '[(128, 3)] * 2',
280
281
282
283
284
                    '--decoder-attention', 'True',
                    '--encoder-attention', 'False',
                    '--gated-attention', 'True',
                    '--self-attention', 'True',
                    '--project-input', 'True',
285
286
287
288
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
                    '--multihead-self-attention-nheads', '2'
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
                ]
                train_translation_model(data_dir, 'fconv_self_att_wp', config)
                generate_main(data_dir)

                # fusion model
                os.rename(os.path.join(data_dir, 'checkpoint_last.pt'), os.path.join(data_dir, 'pretrained.pt'))
                config.extend([
                    '--pretrained', 'True',
                    '--pretrained-checkpoint', os.path.join(data_dir, 'pretrained.pt'),
                    '--save-dir', os.path.join(data_dir, 'fusion_model'),
                ])
                train_translation_model(data_dir, 'fconv_self_att_wp', config)


class TestLanguageModeling(unittest.TestCase):

    def test_fconv_lm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_lm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
Myle Ott's avatar
Myle Ott committed
310
311
312
313
314
315
316
317
318
319
320
321
322
                train_language_model(data_dir, 'fconv_lm', [
                    '--decoder-layers', '[(850, 3)] * 2 + [(1024,4)]',
                    '--decoder-embed-dim', '280',
                    '--optimizer', 'nag',
                    '--lr', '0.1',
                ])
                eval_lm_main(data_dir)

    def test_transformer_lm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer_lm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
Myle Ott's avatar
Myle Ott committed
323
324
325
                train_language_model(
                    data_dir, 'transformer_lm', ['--add-bos-token'], run_validation=True,
                )
326
327
328
                eval_lm_main(data_dir)


329
class TestMaskedLanguageModel(unittest.TestCase):
330
331

    def test_legacy_masked_lm(self):
332
        with contextlib.redirect_stdout(StringIO()):
333
            with tempfile.TemporaryDirectory("test_legacy_mlm") as data_dir:
334
335
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
336
                train_legacy_masked_language_model(data_dir, "masked_lm")
337

Matt Le's avatar
Matt Le committed
338
    def _test_pretrained_masked_lm_for_translation(self, learned_pos_emb, encoder_only):
339
340
341
342
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory("test_mlm") as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
343
                train_legacy_masked_language_model(
Matt Le's avatar
Matt Le committed
344
                    data_dir,
345
                    arch="masked_lm",
Matt Le's avatar
Matt Le committed
346
347
                    extra_args=('--encoder-learned-pos',) if learned_pos_emb else ()
                )
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
                with tempfile.TemporaryDirectory(
                    "test_mlm_translation"
                ) as translation_dir:
                    create_dummy_data(translation_dir)
                    preprocess_translation_data(
                        translation_dir, extra_flags=["--joined-dictionary"]
                    )
                    # Train transformer with data_dir/checkpoint_last.pt
                    train_translation_model(
                        translation_dir,
                        arch="transformer_from_pretrained_xlm",
                        extra_flags=[
                            "--decoder-layers",
                            "1",
                            "--decoder-embed-dim",
                            "32",
                            "--decoder-attention-heads",
                            "1",
                            "--decoder-ffn-embed-dim",
                            "32",
                            "--encoder-layers",
                            "1",
                            "--encoder-embed-dim",
                            "32",
                            "--encoder-attention-heads",
                            "1",
                            "--encoder-ffn-embed-dim",
                            "32",
                            "--pretrained-xlm-checkpoint",
Bairen Yi's avatar
Bairen Yi committed
377
                            "{}/checkpoint_last.pt".format(data_dir),
378
379
380
381
382
383
                            "--activation-fn",
                            "gelu",
                            "--max-source-positions",
                            "500",
                            "--max-target-positions",
                            "500",
Matt Le's avatar
Matt Le committed
384
385
386
387
                        ] + (
                            ["--encoder-learned-pos", "--decoder-learned-pos"]
                            if learned_pos_emb else []
                        ) + (['--init-encoder-only'] if encoder_only else []),
388
389
390
                        task="translation_from_pretrained_xlm",
                    )

Matt Le's avatar
Matt Le committed
391
392
393
394
395
396
    def test_pretrained_masked_lm_for_translation_learned_pos_emb(self):
        self._test_pretrained_masked_lm_for_translation(True, False)

    def test_pretrained_masked_lm_for_translation_sinusoidal_pos_emb(self):
        self._test_pretrained_masked_lm_for_translation(False, False)

397
    def test_pretrained_masked_lm_for_translation_encoder_only(self):
Matt Le's avatar
Matt Le committed
398
        self._test_pretrained_masked_lm_for_translation(True, True)
399

400
401

def train_legacy_masked_language_model(data_dir, arch, extra_args=()):
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    train_parser = options.get_training_parser()
    # TODO: langs should be in and out right?
    train_args = options.parse_args_and_arch(
        train_parser,
        [
            "--task",
            "cross_lingual_lm",
            data_dir,
            "--arch",
            arch,
            # Optimizer args
            "--optimizer",
            "adam",
            "--lr-scheduler",
            "reduce_lr_on_plateau",
            "--lr-shrink",
            "0.5",
            "--lr",
            "0.0001",
            "--min-lr",
            "1e-09",
            # dropout, attention args
            "--dropout",
            "0.1",
            "--attention-dropout",
            "0.1",
            # MLM args
            "--criterion",
430
            "legacy_masked_lm_loss",
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
            "--masked-lm-only",
            "--monolingual-langs",
            "in,out",
            "--num-segment",
            "5",
            # Transformer args: use a small transformer model for fast training
            "--encoder-layers",
            "1",
            "--encoder-embed-dim",
            "32",
            "--encoder-attention-heads",
            "1",
            "--encoder-ffn-embed-dim",
            "32",
            # Other training args
            "--max-tokens",
            "500",
            "--tokens-per-sample",
            "500",
            "--save-dir",
            data_dir,
            "--max-epoch",
            "1",
            "--no-progress-bar",
            "--distributed-world-size",
            "1",
457
458
            "--dataset-impl",
            "raw",
Matt Le's avatar
Matt Le committed
459
        ] + list(extra_args),
460
461
462
463
    )
    train.main(train_args)


Dmytro Okhonko's avatar
Dmytro Okhonko committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
class TestCommonOptions(unittest.TestCase):

    def test_optimizers(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_optimizers') as data_dir:
                # Use just a bit of data and tiny model to keep this test runtime reasonable
                create_dummy_data(data_dir, num_examples=10, maxlen=5)
                preprocess_translation_data(data_dir)
                optimizers = ['adafactor', 'adam', 'nag', 'adagrad', 'sgd', 'adadelta']
                last_checkpoint = os.path.join(data_dir, 'checkpoint_last.pt')
                for optimizer in optimizers:
                    if os.path.exists(last_checkpoint):
                        os.remove(last_checkpoint)
                    train_translation_model(data_dir, 'lstm', [
478
                        '--required-batch-size-multiple', '1',
Dmytro Okhonko's avatar
Dmytro Okhonko committed
479
480
481
482
483
484
485
486
                        '--encoder-layers', '1',
                        '--encoder-hidden-size', '32',
                        '--decoder-layers', '1',
                        '--optimizer', optimizer,
                    ])
                    generate_main(data_dir)


487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def create_dummy_data(data_dir, num_examples=1000, maxlen=20):

    def _create_dummy_data(filename):
        data = torch.rand(num_examples * maxlen)
        data = 97 + torch.floor(26 * data).int()
        with open(os.path.join(data_dir, filename), 'w') as h:
            offset = 0
            for _ in range(num_examples):
                ex_len = random.randint(1, maxlen)
                ex_str = ' '.join(map(chr, data[offset:offset+ex_len]))
                print(ex_str, file=h)
                offset += ex_len

    _create_dummy_data('train.in')
    _create_dummy_data('train.out')
    _create_dummy_data('valid.in')
    _create_dummy_data('valid.out')
    _create_dummy_data('test.in')
    _create_dummy_data('test.out')


508
def preprocess_translation_data(data_dir, extra_flags=None):
509
    preprocess_parser = options.get_preprocessing_parser()
510
511
512
513
514
515
516
517
518
519
520
521
    preprocess_args = preprocess_parser.parse_args(
        [
            '--source-lang', 'in',
            '--target-lang', 'out',
            '--trainpref', os.path.join(data_dir, 'train'),
            '--validpref', os.path.join(data_dir, 'valid'),
            '--testpref', os.path.join(data_dir, 'test'),
            '--thresholdtgt', '0',
            '--thresholdsrc', '0',
            '--destdir', data_dir,
        ] + (extra_flags or []),
    )
522
523
524
    preprocess.main(preprocess_args)


Myle Ott's avatar
Myle Ott committed
525
def train_translation_model(data_dir, arch, extra_flags=None, task='translation', run_validation=False):
526
527
528
529
    train_parser = options.get_training_parser()
    train_args = options.parse_args_and_arch(
        train_parser,
        [
530
            '--task', task,
531
532
533
534
535
536
537
538
            data_dir,
            '--save-dir', data_dir,
            '--arch', arch,
            '--lr', '0.05',
            '--max-tokens', '500',
            '--max-epoch', '1',
            '--no-progress-bar',
            '--distributed-world-size', '1',
Myle Ott's avatar
Myle Ott committed
539
540
            '--source-lang', 'in',
            '--target-lang', 'out',
541
542
543
544
        ] + (extra_flags or []),
    )
    train.main(train_args)

Myle Ott's avatar
Myle Ott committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
    if run_validation:
        # test validation
        validate_parser = options.get_validation_parser()
        validate_args = options.parse_args_and_arch(
            validate_parser,
            [
                '--task', task,
                data_dir,
                '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
                '--valid-subset', 'valid',
                '--max-tokens', '500',
                '--no-progress-bar',
            ]
        )
        validate.main(validate_args)
Myle Ott's avatar
Myle Ott committed
560

561

562
def generate_main(data_dir, extra_flags=None):
563
564
565
566
    if extra_flags is None:
        extra_flags = [
            '--print-alignment',
        ]
567
    generate_parser = options.get_generation_parser()
Myle Ott's avatar
Myle Ott committed
568
569
570
571
572
573
574
575
576
577
    generate_args = options.parse_args_and_arch(
        generate_parser,
        [
            data_dir,
            '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
            '--beam', '3',
            '--batch-size', '64',
            '--max-len-b', '5',
            '--gen-subset', 'valid',
            '--no-progress-bar',
578
        ] + (extra_flags or []),
Myle Ott's avatar
Myle Ott committed
579
    )
580
581
582
583
584
585

    # evaluate model in batch mode
    generate.main(generate_args)

    # evaluate model interactively
    generate_args.buffer_size = 0
586
    generate_args.input = '-'
587
588
589
590
591
592
593
594
    generate_args.max_sentences = None
    orig_stdin = sys.stdin
    sys.stdin = StringIO('h e l l o\n')
    interactive.main(generate_args)
    sys.stdin = orig_stdin


def preprocess_lm_data(data_dir):
595
    preprocess_parser = options.get_preprocessing_parser()
596
597
598
599
600
601
602
603
604
605
    preprocess_args = preprocess_parser.parse_args([
        '--only-source',
        '--trainpref', os.path.join(data_dir, 'train.out'),
        '--validpref', os.path.join(data_dir, 'valid.out'),
        '--testpref', os.path.join(data_dir, 'test.out'),
        '--destdir', data_dir,
    ])
    preprocess.main(preprocess_args)


Myle Ott's avatar
Myle Ott committed
606
def train_language_model(data_dir, arch, extra_flags=None, run_validation=False):
607
608
609
610
    train_parser = options.get_training_parser()
    train_args = options.parse_args_and_arch(
        train_parser,
        [
Myle Ott's avatar
Myle Ott committed
611
            '--task', 'language_modeling',
Myle Ott's avatar
Myle Ott committed
612
            data_dir,
613
            '--arch', arch,
Myle Ott's avatar
Myle Ott committed
614
615
            '--optimizer', 'adam',
            '--lr', '0.0001',
616
617
618
            '--criterion', 'adaptive_loss',
            '--adaptive-softmax-cutoff', '5,10,15',
            '--max-tokens', '500',
Myle Ott's avatar
Myle Ott committed
619
            '--tokens-per-sample', '500',
620
621
            '--save-dir', data_dir,
            '--max-epoch', '1',
Myle Ott's avatar
Myle Ott committed
622
            '--no-progress-bar',
623
            '--distributed-world-size', '1',
624
            '--ddp-backend', 'no_c10d',
Myle Ott's avatar
Myle Ott committed
625
        ] + (extra_flags or []),
626
627
628
    )
    train.main(train_args)

Myle Ott's avatar
Myle Ott committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    if run_validation:
        # test validation
        validate_parser = options.get_validation_parser()
        validate_args = options.parse_args_and_arch(
            validate_parser,
            [
                '--task', 'language_modeling',
                data_dir,
                '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
                '--valid-subset', 'valid',
                '--max-tokens', '500',
                '--no-progress-bar',
            ]
        )
        validate.main(validate_args)
Myle Ott's avatar
Myle Ott committed
644

645
646
647

def eval_lm_main(data_dir):
    eval_lm_parser = options.get_eval_lm_parser()
Myle Ott's avatar
Myle Ott committed
648
649
650
651
652
653
654
655
    eval_lm_args = options.parse_args_and_arch(
        eval_lm_parser,
        [
            data_dir,
            '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
            '--no-progress-bar',
        ],
    )
656
    eval_lm.main(eval_lm_args)
Myle Ott's avatar
Myle Ott committed
657
658
659
660


if __name__ == '__main__':
    unittest.main()