"vscode:/vscode.git/clone" did not exist on "9c274228ccac862e2f330bed1fd7c0b3d8b05c67"
test_flatten_params_wrapper.py 12.4 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
""" Test FlattenParamsWrapper on CPU and GPU (FP32 & FP16 on GPU). """
Myle Ott's avatar
Myle Ott committed
7

8
from collections import OrderedDict
Myle Ott's avatar
Myle Ott committed
9
10
11
import unittest

import torch
12

Myle Ott's avatar
Myle Ott committed
13
14
15
16
17
from fairscale.nn import FlattenParamsWrapper
from fairscale.utils.testing import objects_are_equal


class TestFlattenParams(unittest.TestCase):
18
19
    """ Base test class and used for CPU case. """

20
21
    def _get_module_init_fns(self):
        return [
22
            self._get_basic_linear_module,
23
24
25
            self._get_shared_params_transformer,
        ]

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    def _get_empty_module(self, seed=0):
        torch.manual_seed(seed)  # keep everything deterministic

        class Test(torch.nn.Module):
            def forward(self, x):
                return x + 1

        module = Test()

        def get_input(device, dtype):
            torch.manual_seed(1)  # keep everything deterministic
            return torch.rand(1).to(device=device, dtype=dtype)

        module.get_input = get_input
        return module

Myle Ott's avatar
Myle Ott committed
42
43
44
    def _get_transformer(self, seed=0):
        torch.manual_seed(seed)  # keep everything deterministic
        module = torch.nn.Transformer(
45
            d_model=32, num_encoder_layers=2, num_decoder_layers=2, dim_feedforward=128, dropout=0.1,
Myle Ott's avatar
Myle Ott committed
46
47
        )
        module.register_buffer("dummy_buffer", torch.tensor(1.0))
48
49
50
51
52
53
54
55

        def get_input(device, dtype):
            torch.manual_seed(1)  # keep everything deterministic
            src = torch.rand(20, 8, 32).to(device=device, dtype=dtype)  # T x B x C
            tgt = torch.rand(10, 8, 32).to(device=device, dtype=dtype)  # T x B x C
            return (src, tgt)

        module.get_input = get_input
Myle Ott's avatar
Myle Ott committed
56
57
58
59
60
61
62
63
64
65
        return module

    def _get_shared_params_transformer(self, seed=0):
        module = self._get_transformer(seed=seed)
        # share the FFNs
        for enc_layer, dec_layer in zip(module.encoder.layers, module.decoder.layers):
            dec_layer.linear1.weight = enc_layer.linear1.weight
            dec_layer.linear2.weight = enc_layer.linear2.weight
        return module

66
    def _get_basic_linear_module(self, seed=0):
67
        module = torch.nn.Sequential(
68
69
70
            torch.nn.Sequential(torch.nn.Linear(4, 8), torch.nn.Linear(8, 8)),
            torch.nn.Sequential(torch.nn.Linear(8, 16)),
            torch.nn.Linear(16, 4),
71
72
73
74
75
76
77
78
79
        )

        def get_input(device, dtype):
            torch.manual_seed(1)  # keep everything deterministic
            return (torch.rand(8, 4).to(device=device, dtype=dtype),)

        module.get_input = get_input
        return module

Myle Ott's avatar
Myle Ott committed
80
81
82
    def _get_output(self, module):
        device = next(module.parameters()).device
        dtype = next(module.parameters()).dtype
83
84
        input = module.get_input(device, dtype)
        return module(*input)
Myle Ott's avatar
Myle Ott committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

    def _get_pnorm_after_step(self, module):
        optim = torch.optim.SGD(module.parameters(), lr=0.01)
        loss = self._get_output(module).sum()
        loss.backward()
        optim.step()
        return torch.norm(torch.stack([p.detach().norm() for p in module.parameters()]))

    def _test_num_params(self, module):
        ref_num_params = sum(p.numel() for p in module.parameters())

        flat_module = FlattenParamsWrapper(module)
        flat_num_params = sum(p.numel() for p in flat_module.parameters())

        assert ref_num_params == flat_num_params
        assert flat_num_params == flat_module.flat_param.numel()

    def _test_output(self, module):
        ref_output = self._get_output(module)

        flat_module = FlattenParamsWrapper(module)
        flat_output = self._get_output(flat_module)
        assert objects_are_equal(ref_output, flat_output)

    def test_partial_flattening(self):
        module = self._get_transformer()
        num_params = sum(p.numel() for p in module.parameters())

113
        params_to_flatten = list(module.encoder.layers[1].parameters()) + list(module.decoder.layers[0].parameters())
Myle Ott's avatar
Myle Ott committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        num_params_to_flatten = sum(p.numel() for p in params_to_flatten)

        module = FlattenParamsWrapper(module, param_list=params_to_flatten)
        assert module.flat_param.numel() == num_params_to_flatten
        assert sum(p.numel() for p in module.parameters()) == num_params

        # flattened parameters are removed
        assert len(list(module.encoder.layers[1].parameters())) == 0
        assert len(list(module.decoder.layers[0].parameters())) == 0

        # non-flattened parameters remain
        assert len(list(module.encoder.layers[0].parameters())) > 0
        assert len(list(module.decoder.layers[1].parameters())) > 0

        # test that changing the module dtype works properly
        orig_dtype = params_to_flatten[0].dtype
        new_dtype = torch.float32 if orig_dtype == torch.float16 else torch.float16
        assert module.flat_param.dtype == orig_dtype
132
        assert all(p.dtype == orig_dtype for p in module.encoder.layers[0].parameters())
Myle Ott's avatar
Myle Ott committed
133
134
135
136
        module = module.to(dtype=new_dtype)
        assert module.flat_param.dtype == new_dtype
        assert all(p.dtype == new_dtype for p in module.encoder.layers[0].parameters())

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def test_two_flattening_group(self):
        module = self._get_transformer()
        num_params = sum(p.numel() for p in module.parameters())

        params_to_flatten1 = list(module.encoder.layers[1].parameters()) + list(module.decoder.layers[0].parameters())
        params_to_flatten2 = list(module.encoder.layers[0].parameters()) + list(module.decoder.layers[1].parameters())
        num_params_to_flatten1 = sum(p.numel() for p in params_to_flatten1)
        num_params_to_flatten2 = sum(p.numel() for p in params_to_flatten2)

        module = FlattenParamsWrapper(module, param_list=[params_to_flatten1, params_to_flatten2])
        assert module.flat_params[0].numel() == num_params_to_flatten1
        assert module.flat_params[1].numel() == num_params_to_flatten2
        assert sum(p.numel() for p in module.parameters()) == num_params

    def test_flatten_nothing(self):
        module = self._get_transformer()
        ref_out = self._get_output(module)
        ref_state_dict = module.state_dict()
        for k, v in ref_state_dict.items():
            ref_state_dict[k] = v.clone()
        module = FlattenParamsWrapper(module, param_list=[[]])
        fpw_state_dict = module.state_dict()
        assert ref_state_dict.keys() == fpw_state_dict.keys()
        for k, v in ref_state_dict.items():
            torch.testing.assert_allclose(v, fpw_state_dict[k])
        fpw_out = self._get_output(module)
        torch.testing.assert_allclose(ref_out, fpw_out)

    def test_empty_module(self):
        module = self._get_empty_module()
        in_data = torch.rand(1)
        ref_out = module(in_data)
        module = FlattenParamsWrapper(module)
        assert len(list(module.parameters())) == 0
        assert len(module.state_dict()) == 0
        fpw_out = module(in_data)
        torch.testing.assert_allclose(ref_out, fpw_out)

Myle Ott's avatar
Myle Ott committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    def test_num_params(self):
        module = self._get_transformer()
        self._test_num_params(module)

    def test_shared_params_num_params(self):
        module = self._get_shared_params_transformer()
        self._test_num_params(module)

    def test_output(self):
        module = self._get_transformer()
        self._test_output(module)

    def test_shared_params_output(self):
        module = self._get_shared_params_transformer()
        self._test_output(module)

    def test_shared_params_pnorm_after_step(self):
        # incorrect parameter sharing is likely to cause problems after an
        # optimization step
        module = self._get_shared_params_transformer()
        ref_pnorm_after_step = self._get_pnorm_after_step(module)

        module = self._get_shared_params_transformer()  # recreate
        flat_module = FlattenParamsWrapper(module)
        flat_pnorm_after_step = self._get_pnorm_after_step(flat_module)

        torch.testing.assert_allclose(ref_pnorm_after_step, flat_pnorm_after_step)

    def test_state_dict_equality(self):
204
205
206
207
        """Test that unflattened state dict matches original (unwrapped) one."""
        modules_to_test = [init_fn() for init_fn in self._get_module_init_fns()]
        for module in modules_to_test:
            ref_state_dict = module.state_dict()
Myle Ott's avatar
Myle Ott committed
208

209
210
            flat_module = FlattenParamsWrapper(module)
            flat_state_dict = flat_module.state_dict()
Myle Ott's avatar
Myle Ott committed
211

212
213
214
215
            assert (
                ref_state_dict.keys() == flat_state_dict.keys()
            ), f"{ref_state_dict.keys()} != {flat_state_dict.keys()}"
            assert objects_are_equal(ref_state_dict, flat_state_dict), f"{ref_state_dict} != {flat_state_dict}"
Myle Ott's avatar
Myle Ott committed
216
217

    def test_load_state_dict(self):
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        """Test that original (unwrapped) state_dict can be loaded in wrapped module."""
        for module_init_fn in self._get_module_init_fns():
            module = module_init_fn()
            ref_state_dict = module.state_dict()
            ref_output = self._get_output(module)

            module = module_init_fn(seed=1234)
            flat_module = FlattenParamsWrapper(module)

            # This should work without the unflatten_params context manager
            flat_module.load_state_dict(ref_state_dict)
            flat_output = self._get_output(flat_module)
            assert objects_are_equal(ref_output, flat_output)

            # And it should work with the context manager too
            with flat_module.unflatten_params():
                flat_module.load_state_dict(ref_state_dict)
            flat_output = self._get_output(flat_module)
            assert objects_are_equal(ref_output, flat_output)
Myle Ott's avatar
Myle Ott committed
237
238

    def test_flat_state_dict(self):
239
240
241
242
        """Test that flat state dict can be reloaded and produces the same results."""
        for module_init_fn in self._get_module_init_fns():
            flat_module = FlattenParamsWrapper(module_init_fn())
            ref_output = self._get_output(flat_module)
Myle Ott's avatar
Myle Ott committed
243

244
            flat_state_dict = flat_module.flat_state_dict()
Myle Ott's avatar
Myle Ott committed
245

246
247
248
            new_module = FlattenParamsWrapper(module_init_fn(seed=1234))
            new_module.load_state_dict(flat_state_dict)
            new_output = self._get_output(new_module)
Myle Ott's avatar
Myle Ott committed
249

250
            assert objects_are_equal(ref_output, new_output)
Myle Ott's avatar
Myle Ott committed
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    def test_unflatten_params(self):
        for module_init_fn in self._get_module_init_fns():
            module = FlattenParamsWrapper(module_init_fn())
            buffers = {k.replace("_fpw_module.", "") for k, _ in module.named_buffers()}

            def clone_state_dict():
                return OrderedDict((k, v.clone()) for k, v in module.state_dict().items())

            ref_flat_param = module.flat_param.clone()
            with module.unflatten_params():
                ref_state_dict = clone_state_dict()
            assert not torch.all(ref_flat_param == 0)

            # confirm that unflatten_params reflects values from new_flat_param
            new_flat_param = torch.full_like(module.flat_param, fill_value=42.0)
267
            with module.unflatten_params(flat_params=[new_flat_param]):
268
269
270
271
272
273
                new_state_dict = clone_state_dict()
                assert new_state_dict.keys() == ref_state_dict.keys()
                for k, v in new_state_dict.items():
                    if k in buffers:  # buffers are not changed
                        torch.testing.assert_allclose(v, ref_state_dict[k])
                    else:  # params reflect new_flat_param value
274
                        torch.testing.assert_allclose(v, torch.ones_like(v) * 42.0)
275
276
277
278
279
280
281
282
283
284
285

            # after context manager exits, we go back to previous (reference) state
            torch.testing.assert_allclose(module.flat_param, ref_flat_param)
            with module.unflatten_params():
                ref_state_dict2 = clone_state_dict()
                assert objects_are_equal(ref_state_dict, ref_state_dict2)

            # if we load the new_state_dict, then the flat param should match new_flat_param
            module.load_state_dict(new_state_dict)
            torch.testing.assert_allclose(module.flat_param, new_flat_param)

Myle Ott's avatar
Myle Ott committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestFlattenParamsCUDA(TestFlattenParams):
    def _get_transformer(self, seed=0):
        module = super()._get_transformer(seed=seed)
        return module.cuda()


@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestFlattenParamsCUDAHalf(TestFlattenParams):
    def _get_transformer(self, seed=0):
        module = super()._get_transformer(seed=seed)
        return module.cuda().half()


if __name__ == "__main__":
    unittest.main()