test_flatten_params_wrapper.py 8.4 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

"""
Test FlattenParamsWrapper
"""

import unittest

import torch
13

Myle Ott's avatar
Myle Ott committed
14
15
16
17
18
from fairscale.nn import FlattenParamsWrapper
from fairscale.utils.testing import objects_are_equal


class TestFlattenParams(unittest.TestCase):
19
20
21
22
23
24
    def _get_module_init_fns(self):
        return [
            self._get_shared_params_transformer,
            self._get_nested_flat_module,
        ]

Myle Ott's avatar
Myle Ott committed
25
26
27
    def _get_transformer(self, seed=0):
        torch.manual_seed(seed)  # keep everything deterministic
        module = torch.nn.Transformer(
28
            d_model=32, num_encoder_layers=2, num_decoder_layers=2, dim_feedforward=128, dropout=0.1,
Myle Ott's avatar
Myle Ott committed
29
30
        )
        module.register_buffer("dummy_buffer", torch.tensor(1.0))
31
32
33
34
35
36
37
38

        def get_input(device, dtype):
            torch.manual_seed(1)  # keep everything deterministic
            src = torch.rand(20, 8, 32).to(device=device, dtype=dtype)  # T x B x C
            tgt = torch.rand(10, 8, 32).to(device=device, dtype=dtype)  # T x B x C
            return (src, tgt)

        module.get_input = get_input
Myle Ott's avatar
Myle Ott committed
39
40
41
42
43
44
45
46
47
48
        return module

    def _get_shared_params_transformer(self, seed=0):
        module = self._get_transformer(seed=seed)
        # share the FFNs
        for enc_layer, dec_layer in zip(module.encoder.layers, module.decoder.layers):
            dec_layer.linear1.weight = enc_layer.linear1.weight
            dec_layer.linear2.weight = enc_layer.linear2.weight
        return module

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    def _get_nested_flat_module(self, seed=0):
        module = torch.nn.Sequential(
            FlattenParamsWrapper(
                torch.nn.Sequential(torch.nn.Linear(4, 8), FlattenParamsWrapper(torch.nn.Linear(8, 8)))
            ),
            FlattenParamsWrapper(torch.nn.Sequential(FlattenParamsWrapper(torch.nn.Linear(8, 16)))),
            FlattenParamsWrapper(torch.nn.Linear(16, 4)),
        )

        def get_input(device, dtype):
            torch.manual_seed(1)  # keep everything deterministic
            return (torch.rand(8, 4).to(device=device, dtype=dtype),)

        module.get_input = get_input
        return module

Myle Ott's avatar
Myle Ott committed
65
66
67
    def _get_output(self, module):
        device = next(module.parameters()).device
        dtype = next(module.parameters()).dtype
68
69
        input = module.get_input(device, dtype)
        return module(*input)
Myle Ott's avatar
Myle Ott committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

    def _get_pnorm_after_step(self, module):
        optim = torch.optim.SGD(module.parameters(), lr=0.01)
        loss = self._get_output(module).sum()
        loss.backward()
        optim.step()
        return torch.norm(torch.stack([p.detach().norm() for p in module.parameters()]))

    def _test_num_params(self, module):
        ref_num_params = sum(p.numel() for p in module.parameters())

        flat_module = FlattenParamsWrapper(module)
        flat_num_params = sum(p.numel() for p in flat_module.parameters())

        assert ref_num_params == flat_num_params
        assert flat_num_params == flat_module.flat_param.numel()

    def _test_output(self, module):
        ref_output = self._get_output(module)

        flat_module = FlattenParamsWrapper(module)
        flat_output = self._get_output(flat_module)
        assert objects_are_equal(ref_output, flat_output)

    def test_partial_flattening(self):
        module = self._get_transformer()
        num_params = sum(p.numel() for p in module.parameters())

98
        params_to_flatten = list(module.encoder.layers[1].parameters()) + list(module.decoder.layers[0].parameters())
Myle Ott's avatar
Myle Ott committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        num_params_to_flatten = sum(p.numel() for p in params_to_flatten)

        module = FlattenParamsWrapper(module, param_list=params_to_flatten)
        assert module.flat_param.numel() == num_params_to_flatten
        assert sum(p.numel() for p in module.parameters()) == num_params

        # flattened parameters are removed
        assert len(list(module.encoder.layers[1].parameters())) == 0
        assert len(list(module.decoder.layers[0].parameters())) == 0

        # non-flattened parameters remain
        assert len(list(module.encoder.layers[0].parameters())) > 0
        assert len(list(module.decoder.layers[1].parameters())) > 0

        # test that changing the module dtype works properly
        orig_dtype = params_to_flatten[0].dtype
        new_dtype = torch.float32 if orig_dtype == torch.float16 else torch.float16
        assert module.flat_param.dtype == orig_dtype
117
        assert all(p.dtype == orig_dtype for p in module.encoder.layers[0].parameters())
Myle Ott's avatar
Myle Ott committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        module = module.to(dtype=new_dtype)
        assert module.flat_param.dtype == new_dtype
        assert all(p.dtype == new_dtype for p in module.encoder.layers[0].parameters())

    def test_num_params(self):
        module = self._get_transformer()
        self._test_num_params(module)

    def test_shared_params_num_params(self):
        module = self._get_shared_params_transformer()
        self._test_num_params(module)

    def test_output(self):
        module = self._get_transformer()
        self._test_output(module)

    def test_shared_params_output(self):
        module = self._get_shared_params_transformer()
        self._test_output(module)

    def test_shared_params_pnorm_after_step(self):
        # incorrect parameter sharing is likely to cause problems after an
        # optimization step
        module = self._get_shared_params_transformer()
        ref_pnorm_after_step = self._get_pnorm_after_step(module)

        module = self._get_shared_params_transformer()  # recreate
        flat_module = FlattenParamsWrapper(module)
        flat_pnorm_after_step = self._get_pnorm_after_step(flat_module)

        torch.testing.assert_allclose(ref_pnorm_after_step, flat_pnorm_after_step)

    def test_state_dict_equality(self):
151
152
153
154
        """Test that unflattened state dict matches original (unwrapped) one."""
        modules_to_test = [init_fn() for init_fn in self._get_module_init_fns()]
        for module in modules_to_test:
            ref_state_dict = module.state_dict()
Myle Ott's avatar
Myle Ott committed
155

156
157
            flat_module = FlattenParamsWrapper(module)
            flat_state_dict = flat_module.state_dict()
Myle Ott's avatar
Myle Ott committed
158

159
160
161
162
            assert (
                ref_state_dict.keys() == flat_state_dict.keys()
            ), f"{ref_state_dict.keys()} != {flat_state_dict.keys()}"
            assert objects_are_equal(ref_state_dict, flat_state_dict), f"{ref_state_dict} != {flat_state_dict}"
Myle Ott's avatar
Myle Ott committed
163
164

    def test_load_state_dict(self):
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        """Test that original (unwrapped) state_dict can be loaded in wrapped module."""
        for module_init_fn in self._get_module_init_fns():
            module = module_init_fn()
            ref_state_dict = module.state_dict()
            ref_output = self._get_output(module)

            module = module_init_fn(seed=1234)
            flat_module = FlattenParamsWrapper(module)

            # This should work without the unflatten_params context manager
            flat_module.load_state_dict(ref_state_dict)
            flat_output = self._get_output(flat_module)
            assert objects_are_equal(ref_output, flat_output)

            # And it should work with the context manager too
            with flat_module.unflatten_params():
                flat_module.load_state_dict(ref_state_dict)
            flat_output = self._get_output(flat_module)
            assert objects_are_equal(ref_output, flat_output)
Myle Ott's avatar
Myle Ott committed
184
185

    def test_flat_state_dict(self):
186
187
188
189
        """Test that flat state dict can be reloaded and produces the same results."""
        for module_init_fn in self._get_module_init_fns():
            flat_module = FlattenParamsWrapper(module_init_fn())
            ref_output = self._get_output(flat_module)
Myle Ott's avatar
Myle Ott committed
190

191
            flat_state_dict = flat_module.flat_state_dict()
Myle Ott's avatar
Myle Ott committed
192

193
194
195
            new_module = FlattenParamsWrapper(module_init_fn(seed=1234))
            new_module.load_state_dict(flat_state_dict)
            new_output = self._get_output(new_module)
Myle Ott's avatar
Myle Ott committed
196

197
            assert objects_are_equal(ref_output, new_output)
Myle Ott's avatar
Myle Ott committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215


@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestFlattenParamsCUDA(TestFlattenParams):
    def _get_transformer(self, seed=0):
        module = super()._get_transformer(seed=seed)
        return module.cuda()


@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestFlattenParamsCUDAHalf(TestFlattenParams):
    def _get_transformer(self, seed=0):
        module = super()._get_transformer(seed=seed)
        return module.cuda().half()


if __name__ == "__main__":
    unittest.main()