test_flatten_params_wrapper.py 6.65 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

"""
Test FlattenParamsWrapper
"""

import unittest

import torch
from fairscale.nn import FlattenParamsWrapper
from fairscale.utils.testing import objects_are_equal


class TestFlattenParams(unittest.TestCase):
    def _get_transformer(self, seed=0):
        torch.manual_seed(seed)  # keep everything deterministic
        module = torch.nn.Transformer(
            d_model=32,
            num_encoder_layers=2,
            num_decoder_layers=2,
            dim_feedforward=128,
            dropout=0.1,
        )
        module.register_buffer("dummy_buffer", torch.tensor(1.0))
        return module

    def _get_shared_params_transformer(self, seed=0):
        module = self._get_transformer(seed=seed)
        # share the FFNs
        for enc_layer, dec_layer in zip(module.encoder.layers, module.decoder.layers):
            dec_layer.linear1.weight = enc_layer.linear1.weight
            dec_layer.linear2.weight = enc_layer.linear2.weight
        return module

    def _get_output(self, module):
        torch.manual_seed(1)  # keep everything deterministic
        device = next(module.parameters()).device
        dtype = next(module.parameters()).dtype
        src = torch.rand(20, 8, 32).to(device=device, dtype=dtype)  # T x B x C
        tgt = torch.rand(10, 8, 32).to(device=device, dtype=dtype)  # T x B x C
        return module(src, tgt)

    def _get_pnorm_after_step(self, module):
        optim = torch.optim.SGD(module.parameters(), lr=0.01)
        loss = self._get_output(module).sum()
        loss.backward()
        optim.step()
        return torch.norm(torch.stack([p.detach().norm() for p in module.parameters()]))

    def _test_num_params(self, module):
        ref_num_params = sum(p.numel() for p in module.parameters())

        flat_module = FlattenParamsWrapper(module)
        flat_num_params = sum(p.numel() for p in flat_module.parameters())

        assert ref_num_params == flat_num_params
        assert flat_num_params == flat_module.flat_param.numel()

    def _test_output(self, module):
        ref_output = self._get_output(module)

        flat_module = FlattenParamsWrapper(module)
        flat_output = self._get_output(flat_module)
        assert objects_are_equal(ref_output, flat_output)

    def test_partial_flattening(self):
        module = self._get_transformer()
        num_params = sum(p.numel() for p in module.parameters())

        params_to_flatten = (
            list(module.encoder.layers[1].parameters())
            + list(module.decoder.layers[0].parameters())
        )
        num_params_to_flatten = sum(p.numel() for p in params_to_flatten)

        module = FlattenParamsWrapper(module, param_list=params_to_flatten)
        assert module.flat_param.numel() == num_params_to_flatten
        assert sum(p.numel() for p in module.parameters()) == num_params

        # flattened parameters are removed
        assert len(list(module.encoder.layers[1].parameters())) == 0
        assert len(list(module.decoder.layers[0].parameters())) == 0

        # non-flattened parameters remain
        assert len(list(module.encoder.layers[0].parameters())) > 0
        assert len(list(module.decoder.layers[1].parameters())) > 0

        # test that changing the module dtype works properly
        orig_dtype = params_to_flatten[0].dtype
        new_dtype = torch.float32 if orig_dtype == torch.float16 else torch.float16
        assert module.flat_param.dtype == orig_dtype
        assert all(
            p.dtype == orig_dtype for p in module.encoder.layers[0].parameters()
        )
        module = module.to(dtype=new_dtype)
        assert module.flat_param.dtype == new_dtype
        assert all(p.dtype == new_dtype for p in module.encoder.layers[0].parameters())

    def test_num_params(self):
        module = self._get_transformer()
        self._test_num_params(module)

    def test_shared_params_num_params(self):
        module = self._get_shared_params_transformer()
        self._test_num_params(module)

    def test_output(self):
        module = self._get_transformer()
        self._test_output(module)

    def test_shared_params_output(self):
        module = self._get_shared_params_transformer()
        self._test_output(module)

    def test_shared_params_pnorm_after_step(self):
        # incorrect parameter sharing is likely to cause problems after an
        # optimization step
        module = self._get_shared_params_transformer()
        ref_pnorm_after_step = self._get_pnorm_after_step(module)

        module = self._get_shared_params_transformer()  # recreate
        flat_module = FlattenParamsWrapper(module)
        flat_pnorm_after_step = self._get_pnorm_after_step(flat_module)

        torch.testing.assert_allclose(ref_pnorm_after_step, flat_pnorm_after_step)

    def test_state_dict_equality(self):
        module = self._get_shared_params_transformer()
        ref_state_dict = module.state_dict()

        flat_module = FlattenParamsWrapper(module)
        flat_state_dict = flat_module.state_dict()

        assert objects_are_equal(ref_state_dict, flat_state_dict)

    def test_load_state_dict(self):
        module = self._get_shared_params_transformer()
        ref_state_dict = module.state_dict()
        ref_output = self._get_output(module)

        module = self._get_shared_params_transformer(seed=1234)
        flat_module = FlattenParamsWrapper(module)
        flat_module.load_state_dict(ref_state_dict)
        flat_output = self._get_output(flat_module)

        assert objects_are_equal(ref_output, flat_output)

    def test_flat_state_dict(self):
        flat_module = self._get_shared_params_transformer()
        flat_module = FlattenParamsWrapper(flat_module)
        ref_output = self._get_output(flat_module)

156
        flat_state_dict = flat_module.flat_state_dict()
Myle Ott's avatar
Myle Ott committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

        new_module = self._get_shared_params_transformer(seed=1234)
        new_module = FlattenParamsWrapper(new_module)
        new_module.load_state_dict(flat_state_dict)
        new_output = self._get_output(new_module)

        assert objects_are_equal(ref_output, new_output)


@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestFlattenParamsCUDA(TestFlattenParams):
    def _get_transformer(self, seed=0):
        module = super()._get_transformer(seed=seed)
        return module.cuda()


@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestFlattenParamsCUDAHalf(TestFlattenParams):
    def _get_transformer(self, seed=0):
        module = super()._get_transformer(seed=seed)
        return module.cuda().half()


if __name__ == "__main__":
    unittest.main()