test_layers.py 21.9 KB
Newer Older
Tom Birch's avatar
Tom Birch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Tom Birch's avatar
Tom Birch committed
22
import os
23
import tempfile
Tom Birch's avatar
Tom Birch committed
24
25

import pytest
Tom Birch's avatar
Tom Birch committed
26
27
import torch
from torch import nn
Tom Birch's avatar
Tom Birch committed
28
from torch.distributed import rpc
Tom Birch's avatar
Tom Birch committed
29
30
31
32
33
import torch.nn.init as init
from torch.nn.parameter import Parameter

from fairscale.nn.model_parallel import initialize as mpu
from fairscale.nn.model_parallel import layers
34
from fairscale.nn.pipe import MultiProcessPipe
35
from fairscale.utils.testing import dist_init, get_world_sizes, set_random_seed, spawn_for_all_world_sizes, torch_spawn
Tom Birch's avatar
Tom Birch committed
36
37


Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
38
39
def run_test_parallel_embedding(rank, model_parallel_size, filename, filename_rpc):
    dist_init(rank, model_parallel_size, filename, filename_rpc)
Tom Birch's avatar
Tom Birch committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    if torch.distributed.get_rank() == 0:
        print("> testing parallel embedding with model parallel size {} ...".format(model_parallel_size))

    mpu.initialize_model_parallel(model_parallel_size)
    model_parallel_size = mpu.get_model_parallel_world_size()

    batch_size = 17
    seq_length = 23
    vocab_size = 48
    hidden_size = 16
    seed = 1236

    set_random_seed(123)
    input_data = torch.LongTensor(size=(batch_size, seq_length)).random_(0, vocab_size).cuda()
    loss_weight = torch.randn([batch_size, seq_length, hidden_size]).cuda()

    set_random_seed(seed)
    embedding_original = torch.nn.Embedding(vocab_size, hidden_size).cuda()

    output = embedding_original(input_data)
    loss_original = torch.mul(output, loss_weight).sum()
    loss_original.backward()

    set_random_seed(seed)
    embedding_parallel = layers.ParallelEmbedding(vocab_size, hidden_size, init_method=init.normal_).cuda()
    output = embedding_parallel(input_data)
    loss_parallel = torch.mul(output, loss_weight).sum()
    loss_parallel.backward()

    set_random_seed(seed)
    embedding_vocab_parallel = layers.VocabParallelEmbedding(vocab_size, hidden_size, init_method=init.normal_).cuda()
    output = embedding_vocab_parallel(input_data)
    loss_vocab_parallel = torch.mul(output, loss_weight).sum()
    loss_vocab_parallel.backward()

    torch.distributed.barrier()
    error = loss_parallel.sub(loss_original).abs()
    print("   error in loss (parallel) on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-12, "error: {}".format(error)

    torch.distributed.barrier()
    error = loss_vocab_parallel.sub(loss_original).abs()
    print("   error in loss (vocab parallel) on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-12, "error: {}".format(error)

    weight_grad_orig = torch.split(embedding_original.weight.grad, hidden_size // model_parallel_size, 1)[
        mpu.get_model_parallel_rank()
    ]
    error = embedding_parallel.weight.grad.sub(weight_grad_orig).abs().max()
    print("   error in grad (parallel) on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-12, "error: {}".format(error)

    weight_grad_orig = torch.split(embedding_original.weight.grad, vocab_size // model_parallel_size, 0)[
        mpu.get_model_parallel_rank()
    ]
    error = embedding_vocab_parallel.weight.grad.sub(weight_grad_orig).abs().max()
    print("   error in grad (vocab parallel) on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-12, "error: {}".format(error)

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(">> passed the test :-)")


Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
108
109
def run_test_initialize_affine_weight(rank, model_parallel_size, filename, filename_rpc):
    dist_init(rank, model_parallel_size, filename, filename_rpc)
Tom Birch's avatar
Tom Birch committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

    mpu.initialize_model_parallel(model_parallel_size)
    if torch.distributed.get_rank() == 0:
        print("> testing initialize_affine_weight with model parallel size: {}".format(model_parallel_size))
    model_parallel_size = mpu.get_model_parallel_world_size()

    seed = 12345
    input_size_coeff = 13
    input_size = input_size_coeff * model_parallel_size
    output_size_coeff = 17
    output_size = output_size_coeff * model_parallel_size

    # ---------------
    # Column parallel
    # ---------------
    weight = torch.empty(output_size_coeff, input_size)
    set_random_seed(seed)
    layers._initialize_affine_weight(weight, output_size, input_size, output_size_coeff, 0, torch.nn.init.normal_)
    # Target.
    set_random_seed(seed)
    master_weight = torch.empty(output_size, input_size)
    torch.nn.init.normal_(master_weight)
    rank = mpu.get_model_parallel_rank()
    my_weight = torch.split(master_weight, output_size_coeff, dim=0)[rank].contiguous().clone()

    # Compare.
    error = weight.sub(my_weight).abs().max()
    torch.distributed.barrier()
    print(
        "   column parallel max error (should be zero) on global rank {}: {}".format(
            torch.distributed.get_rank(), error
        )
    )
    assert error < 1.0e-6

    # ------------
    # Row parallel
    # ------------
    weight = torch.empty(output_size, input_size_coeff)
    set_random_seed(seed)
    layers._initialize_affine_weight(weight, output_size, input_size, input_size_coeff, 1, torch.nn.init.normal_)
    # Target.
    set_random_seed(seed)
    master_weight = torch.empty(output_size, input_size)
    torch.nn.init.normal_(master_weight)
    rank = mpu.get_model_parallel_rank()
    my_weight = torch.split(master_weight, input_size_coeff, dim=1)[rank].contiguous().clone()

    # Compare.
    error = weight.sub(my_weight).abs().max()
    torch.distributed.barrier()
    print(
        "   row parallel max error (should be zero) on global rank {}: {}".format(torch.distributed.get_rank(), error)
    )
    assert error < 1.0e-6

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(" >> passed the test :-)")


class IdentityLayer2D(torch.nn.Module):
    def __init__(self, m, n):
        super(IdentityLayer2D, self).__init__()
        self.weight = Parameter(torch.Tensor(m, n))
        torch.nn.init.xavier_normal_(self.weight)

    def forward(self):
        return self.weight


Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
184
185
def run_test_column_parallel_linear(rank, model_parallel_size, filename, filename_rpc):
    dist_init(rank, model_parallel_size, filename, filename_rpc)
Tom Birch's avatar
Tom Birch committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

    mpu.initialize_model_parallel(model_parallel_size)
    if torch.distributed.get_rank() == 0:
        print("> testing ColumnParallelLinear with model parallel size: {}".format(model_parallel_size))
    model_parallel_size = mpu.get_model_parallel_world_size()

    seed = 12345
    set_random_seed(seed)
    input_size_coeff = 13
    input_size = input_size_coeff * model_parallel_size
    output_size_coeff = 17
    output_size = output_size_coeff * model_parallel_size
    batch_size = 7

    # Network
    identity_layer = IdentityLayer2D(batch_size, input_size).cuda()
    linear_layer = layers.ColumnParallelLinear(input_size, output_size, keep_master_weight_for_test=True).cuda()
    loss_weight = torch.randn([batch_size, output_size]).cuda()
    # Forward
    input_ = identity_layer()
    output = linear_layer(input_)
    loss = torch.mul(output, loss_weight).sum()
    # Backward
    loss.backward()

    # Values.
    dLdY = loss_weight
    X = identity_layer.weight
    A = linear_layer.master_weight.cuda()
    dLdA = torch.matmul(dLdY.t(), X)
    dLdb = torch.matmul(torch.ones(batch_size, 1).cuda().t(), dLdY).view(-1)
    dLdX = torch.matmul(dLdY, A)

    rank = mpu.get_model_parallel_rank()
    my_dLdA = torch.split(dLdA, output_size_coeff, dim=0)[rank].contiguous().clone()
    error = my_dLdA.sub(linear_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print("   error in dLdA on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    my_dLdb = torch.split(dLdb, output_size_coeff, dim=0)[rank].contiguous().clone()
    error = my_dLdb.sub(linear_layer.bias.grad).abs().max()
    torch.distributed.barrier()
    print("   error in dLdb on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    error = dLdX.sub(identity_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print("   error in dLdX on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(" >> passed the test :-)")


Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
245
246
def run_test_row_parallel_linear(rank, model_parallel_size, filename, filename_rpc):
    dist_init(rank, model_parallel_size, filename, filename_rpc)
Tom Birch's avatar
Tom Birch committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

    mpu.initialize_model_parallel(model_parallel_size)
    if torch.distributed.get_rank() == 0:
        print("> testing RowParallelLinear with model parallel size: {}".format(model_parallel_size))
    model_parallel_size = mpu.get_model_parallel_world_size()

    seed = 12345
    set_random_seed(seed)
    input_size_coeff = 13
    input_size = input_size_coeff * model_parallel_size
    output_size_coeff = 17
    output_size = output_size_coeff * model_parallel_size
    batch_size = 7

    # Network
    identity_layer = IdentityLayer2D(batch_size, input_size).cuda()
    linear_layer = layers.RowParallelLinear(input_size, output_size, keep_master_weight_for_test=True).cuda()
    loss_weight = torch.randn([batch_size, output_size]).cuda()
    # Forward
    input_ = identity_layer()
    output = linear_layer(input_)
    loss = torch.mul(output, loss_weight).sum()
    # Backward
    loss.backward()

    # Values.
    dLdY = loss_weight
    X = identity_layer.weight
    A = linear_layer.master_weight.cuda()
    dLdA = torch.matmul(dLdY.t(), X)
    dLdb = torch.matmul(torch.ones(batch_size, 1).cuda().t(), dLdY).view(-1)
    dLdX = torch.matmul(dLdY, A)

    rank = mpu.get_model_parallel_rank()
    my_dLdA = torch.split(dLdA, input_size_coeff, dim=1)[rank].contiguous().clone()
    error = my_dLdA.sub(linear_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print("   error in dLdA on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    error = dLdb.sub(linear_layer.bias.grad).abs().max()
    torch.distributed.barrier()
    print("   error in dLdb on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    error = dLdX.sub(identity_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print("   error in dLdX on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(" >> passed the test :-)")


Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
305
def run_test_pipe(rank, world_size, filename, filename_rpc, skip_dist_init=False):
Tom Birch's avatar
Tom Birch committed
306
307
    pipe_world_size = 2

Tom Birch's avatar
Tom Birch committed
308
309
310
311
    if world_size == 1:
        return

    if not skip_dist_init:
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
312
        dist_init(rank, world_size, filename, filename_rpc)
Tom Birch's avatar
Tom Birch committed
313
314
315
316
317
318
319
    else:
        os.environ["MASTER_ADDR"] = "localhost"
        os.environ["MASTER_PORT"] = "29502"
        rpc.init_rpc(f"Test{rank}", rank=rank, world_size=world_size)

    mpu.initialize_model_parallel(world_size / pipe_world_size, pipe_world_size)
    model_parallel_size = mpu.get_model_parallel_world_size()
Tom Birch's avatar
Tom Birch committed
320
321
    if torch.distributed.get_rank() == 0:
        print(
322
            "> testing Sequential + MultiProcessPipe with model parallel size: {}, pipe: {}".format(
Tom Birch's avatar
Tom Birch committed
323
324
325
                model_parallel_size, pipe_world_size
            )
        )
Tom Birch's avatar
Tom Birch committed
326
    chunk_size = 4
Tom Birch's avatar
Tom Birch committed
327
328
329

    seed = 12345
    set_random_seed(seed)
Tom Birch's avatar
Tom Birch committed
330
    input_size_coeff = 3
Tom Birch's avatar
Tom Birch committed
331
    input_size = input_size_coeff * model_parallel_size
Tom Birch's avatar
Tom Birch committed
332
    output_size_coeff = 7
Tom Birch's avatar
Tom Birch committed
333
    output_size = output_size_coeff * model_parallel_size
Tom Birch's avatar
Tom Birch committed
334
335
336
337
    batch_size = 3 * chunk_size

    target = torch.rand((batch_size, input_size), requires_grad=True).cuda()
    print(f"target = {target}")
Tom Birch's avatar
Tom Birch committed
338
339
340
341
342
343
344
345
346
347
348
349

    identity = IdentityLayer2D(batch_size, input_size).cuda()

    pipeline_devices = mpu.get_pipeline_parallel_group()

    set_random_seed(seed)
    model = nn.Sequential(
        layers.ColumnParallelLinear(input_size, output_size, keep_master_weight_for_test=True, bias=False).cuda(),
        nn.ReLU(),
        layers.RowParallelLinear(output_size, input_size, keep_master_weight_for_test=True, bias=False).cuda(),
    )
    set_random_seed(seed)
Tom Birch's avatar
Tom Birch committed
350
351

    reference = [
Tom Birch's avatar
Tom Birch committed
352
353
354
        nn.Linear(input_size, output_size, bias=False).cuda(),
        nn.ReLU(),
        nn.Linear(output_size, input_size, bias=False).cuda(),
Tom Birch's avatar
Tom Birch committed
355
    ]
Tom Birch's avatar
Tom Birch committed
356

Tom Birch's avatar
Tom Birch committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    print(f"setup {reference[0].weight.size()}, {model[0].weight.size()}, {(input_size, output_size)}")
    print(f"setup {reference[2].weight.size()}, {(output_size, input_size)}")

    reference[0].weight = Parameter(model[0].get_master_weight().clone()).cuda()
    reference[2].weight = Parameter(model[2].get_master_weight().clone()).cuda()

    reference = nn.Sequential(*reference)

    def grad_graph(depth, grad):
        result = depth * " " + str(grad)
        if grad:
            for x in grad.next_functions:
                result += "\n" + grad_graph(depth + 1, x[0])
        return result

    def check_weights(x, y, key: str, index=None):
        for i in [2, 0]:
            if index is not None and i != index:
                continue
            left = x[i].get_master_weight()
            right = y[i].weight.data
            if not torch.allclose(left, right, atol=1.0e-6) or index is not None:
                print(f"check_weights {key}-{i}: left = {left}, \nright = {right}")
            if not torch.equal(left, right):
                print(f"check_weights NOT_EQUAL {key}-{i}: left = {left}, \nright = {right}")
            assert torch.allclose(left, right, atol=1.0e-6)

    def dump_opt_params(opt):
        for i, group in enumerate(opt.param_groups):
            for j, p in enumerate(group["params"]):
                print(f"{torch.distributed.get_rank()}:param {(i,j)} = {p}")
                print(f"{torch.distributed.get_rank()}:param.grad {(i,j)} = {p.grad}")

    def forward_model(model_, target, step=False):
        optimizer = torch.optim.SGD(model_.parameters(), lr=0.01, momentum=0.9)
        optimizer.zero_grad()
        model_.zero_grad()
        output = model_(identity())
        loss = nn.MSELoss()
        model_.zero_grad()
        if step:
            loss(output, target).backward()
            saved_weight_0 = model_[0].weight.data.clone()
            saved_weight_2 = model_[2].weight.data.clone()
            dump_opt_params(optimizer)
            optimizer.step()
            assert not torch.allclose(saved_weight_0, model_[0].weight.data, atol=1.0e-6)
            assert not torch.allclose(saved_weight_2, model_[2].weight.data, atol=1.0e-6)
        return output

    output = forward_model(model, target)
    reference_output = forward_model(reference, target)
Tom Birch's avatar
Tom Birch committed
409

Tom Birch's avatar
Tom Birch committed
410
411
412
413
414
415
416
417
    error = reference_output.sub(output).max()
    torch.distributed.barrier()
    assert error < 1.0e-6

    output = forward_model(model, target)
    error = reference_output.sub(output).max()
    torch.distributed.barrier()
    assert error < 1.0e-6
Tom Birch's avatar
Tom Birch committed
418

Tom Birch's avatar
Tom Birch committed
419
    output = forward_model(model, target)
Tom Birch's avatar
Tom Birch committed
420
421
422
423
    error = reference_output.sub(output).max()
    torch.distributed.barrier()
    assert error < 1.0e-6

Tom Birch's avatar
Tom Birch committed
424
425
426
427
428
429
430
431
432
433
434
    check_weights(model, reference, "before")
    saved_weight_0 = model[0].weight.data.clone()
    saved_weight_2 = model[2].weight.data.clone()
    output = forward_model(model, target, step=True)
    error = reference_output.sub(output).max()
    assert error < 1.0e-6
    model[0].weight.data = saved_weight_0
    model[2].weight.data = saved_weight_2

    worker_map = {i: f"Test{i}" for i in range(torch.distributed.get_world_size())}

Tom Birch's avatar
Tom Birch committed
435
    if pipe_world_size == 2:
Tom Birch's avatar
Tom Birch committed
436
437
438
        print(f"actually doing pipe stuff now")
        assert torch.equal(saved_weight_0, model[0].weight.data)
        assert torch.equal(saved_weight_2, model[2].weight.data)
439
        pipe_model = MultiProcessPipe(
Tom Birch's avatar
Tom Birch committed
440
441
442
443
444
445
446
            model,
            [2, 1],
            group=pipeline_devices,
            worker_map=worker_map,
            input_device=torch.cuda.current_device(),
            chunks=chunk_size,
        ).cuda()
Tom Birch's avatar
Tom Birch committed
447
        torch.distributed.barrier()
Tom Birch's avatar
Tom Birch committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
        pipe_rank = torch.distributed.get_rank(group=mpu.get_pipeline_parallel_group())
        print(f"pipe rank is {pipe_rank}")
        if pipe_rank == 0:
            assert torch.equal(saved_weight_0, pipe_model[0].weight.data)
        else:
            if not torch.equal(saved_weight_2, pipe_model[0].weight.data):
                print(f"ne {pipe_rank}: left\n{saved_weight_2}\nright:\n{pipe_model[0].weight.data}")
                assert torch.equal(saved_weight_2, pipe_model[0].weight.data)
        optimizer = torch.optim.SGD(pipe_model.parameters(), lr=0.01, momentum=0.9)
        optimizer.zero_grad()
        if pipe_rank == 0:
            assert torch.equal(saved_weight_0, pipe_model[0].weight.data)
            print(f"runner {rank}:\n{pipe_model[0].weight.data}")
        else:
            assert torch.equal(saved_weight_2, pipe_model[0].weight.data)
            print(f"runner {rank}:\n{pipe_model[0].weight.data}")

        if torch.distributed.get_rank(mpu.get_pipeline_parallel_group()) == 1:
            check_weights(model, reference, "pre-pipe", index=2)
        else:
            check_weights(model, reference, "pre-pipe", index=0)

Tom Birch's avatar
Tom Birch committed
470
        pipe_output = pipe_model(identity())
Tom Birch's avatar
Tom Birch committed
471
472
473
474
475
        print(f"exited pipe for {rank}")
        forward_model(reference, target, step=True)

        print(f"pipe_output {rank} = {pipe_output}")
        print(f"reference_output {rank} = {reference_output}")
Tom Birch's avatar
Tom Birch committed
476
477

        torch.distributed.barrier()
Tom Birch's avatar
Tom Birch committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

        if torch.distributed.get_rank(mpu.get_pipeline_parallel_group()) == 1:
            error = reference_output.sub(pipe_output.cuda()).max()
            if error >= 1.0e-6:
                print(f"error bad {error}")
            assert error < 1.0e-6

            loss = nn.MSELoss()
            failed = False
            pipe_output.retain_grad()
            with torch.autograd.profiler.profile() as prof:
                try:
                    loss(pipe_output, target).backward()
                except Exception as e:
                    failed = True
                    print(f"got {e} while doing backward, deadlock?")
            if failed:
                raise RuntimeError("failed somehow")
            dump_opt_params(optimizer)
            optimizer.step()

            print(f"calling check_weights on master")
            check_weights(model, reference, "pipe", index=2)
            print(f"waiting for barrier on master, pid={os.getpid()}")
        else:
            print(f"calling backwards on slave, pid={os.getpid()}")
            failed = False
            with torch.autograd.profiler.profile() as prof:
                try:
507
                    pipe_model.back_helper(pipe_output)
Tom Birch's avatar
Tom Birch committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
                except Exception as e:
                    failed = True
                    print(f"got {e} while doing backward, deadlock?")
            if failed:
                raise RuntimeError("failed somehow")
            dump_opt_params(optimizer)
            print(f"calling step on slave")
            optimizer.step()
            print(f"calling check_weights on slave")
            check_weights(model, reference, "pipe", index=0)
            print(f"waiting for barrier on slave")

        pipe_model.zero_grad()
        torch.distributed.barrier()

523
        pipe_model.eval()
Tom Birch's avatar
Tom Birch committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
        pipe_output = pipe_model(identity())
        updated_ref_output = forward_model(reference, target)
        if torch.distributed.get_rank(mpu.get_pipeline_parallel_group()) == 1:
            error = updated_ref_output.sub(pipe_output.cuda()).max()
            print(f"outputs are ref:\n{updated_ref_output}\npipe:\n{pipe_output}")
            assert error < 1.0e-6
        torch.distributed.barrier()

        print(f"finished waiting for barrier on, pid={os.getpid()}")

    print(f"really exited pipe for {rank}")

    rpc.shutdown()
    torch.distributed.destroy_process_group()
Tom Birch's avatar
Tom Birch committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555


torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False


def test_affine_weight():
    spawn_for_all_world_sizes(run_test_initialize_affine_weight)


def test_embedding():
    spawn_for_all_world_sizes(run_test_parallel_embedding)


def test_column_parallel():
    spawn_for_all_world_sizes(run_test_column_parallel_linear)


Tom Birch's avatar
Tom Birch committed
556
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="only works on mpi")
Tom Birch's avatar
Tom Birch committed
557
558
559
560
def test_row_parallel():
    spawn_for_all_world_sizes(run_test_row_parallel_linear)


Tom Birch's avatar
Tom Birch committed
561
562
563
564
565
@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="only works on mpi")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def mpi_pipe():
    mpu.destroy_model_parallel()
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
566
567
568
569
570
571
572
573
574
575
    _, tempfile_init = tempfile.mkstemp()
    _, tempfile_rpc_init = tempfile.mkstemp()

    run_test_pipe(
        torch.distributed.get_rank(),
        torch.distributed.get_world_size(),
        tempfile_init,
        tempfile_rpc_init,
        skip_dist_init=True,
    )
Tom Birch's avatar
Tom Birch committed
576
577
578
579
580
581
582
583
584
585
586
587


@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def test_pipe_layer():
    world_sizes = [x for x in get_world_sizes() if x <= torch.cuda.device_count() / 2]

    spawn_for_all_world_sizes(run_test_pipe, args=[False])


@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
@pytest.mark.skip(reason="potential deadlock in nccl with multiple processes using the same gpu")
def test_eight_pipe_layer():
Tom Birch's avatar
Tom Birch committed
588
589
    world_sizes = [x for x in get_world_sizes() if x <= torch.cuda.device_count() / 2]

Tom Birch's avatar
Tom Birch committed
590
    spawn_for_all_world_sizes(run_test_pipe, [8])